Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду Российский патент 2017 года по МПК F42B35/00 G01S13/58 

Описание патента на изобретение RU2626474C1

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия бронебойных цельнокорпусных (сплошных) калиберных и подкалиберных снарядов с отделяющимся поддоном.

Известен ряд способов измерения параметров пробития преграды метаемым элементом /1-3/, например пулей, артиллерийским снарядом, или кумулятивной струей, предусматривающих измерение интервалов времени прохождения блокирующих плоскостей преграды, находящихся на заданном расстоянии, с последующим определением скорости прохождения метаемого элемента между ними, в местах разделения блокирующих плоскостей размещают измерительные преобразователи в виде сетчатых электродов или рамок с параллельно выполненными изолированными проводниками, по разрыву которых фиксируют в каждой плоскости координаты деформации преграды метаемым элементом посредством соответствующих устройств обработки и регистрации.

Недостатком данных способов является необходимость внедрения в преграду через заданные промежутки измерительных преобразователей, что нарушает ее сплошность и исходные прочностные характеристики, и, таким образом, влияет на адекватность полученных результатов реальным условиям применения боеприпаса. Кроме того, данные способы не учитывают возможного запреградного действия метаемого элемента, т.е. возможный разрыв измерительного преобразователя осколком преграды даже в случае ее непробития и выдачу им "ложного" сигнала.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ оценки пробивного действия дистанционного боеприпаса /4/.

Способ заключается в том, что подрыв боевой части боеприпаса осуществляют с помощью устройства инициирования во взрывной камере, в пределах двугранного угла ΔΘ, на заданном расстоянии устанавливают закрепленную преграду заданной толщины, определяют среднюю скорость V1 поля поражения боевой части по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части поля поражения, летящего в пределах двугранного угла ΔΘ от момента подрыва боевой части до момента попадания поражающих элементов (ПЭ) поля поражения боеприпаса в закрепленную преграду, определяют среднюю скорость V2 поля поражения боевой части по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части поля поражения, после пробития поражающими элементами поля поражения боеприпаса закрепленной преграды и определяют показатель пробивной способности поля поражения боеприпаса.

Измерители скорости поражающих элементов поля поражения боеприпаса, устанавливают так, что оси диаграмм направленности антенн измерителей составляют с плоскостью, проходящей через продольную ось боеприпаса и поперечную ось щели взрывной камеры, острый угол α.

Показатель пробивной способности поля поражения боеприпаса предложено определять по формуле Кпр=(V1+V2)/V1. Если Kпр=1 пробивную способность поля поражения боеприпаса считают неудовлетворительной, если 1<Kпр<1,5 - удовлетворительной и если Kпр>1,5 - высокой.

При этом скорости V1 и V2 определяются как средние арифметические скоростей лидирующих и замыкающих ПЭ боеприпаса до и после преграды.

К недостаткам данного способа можно отнести следующие:

1) Потребность использования двух измерительных устройств.

2) Способ неприемлем для оценки глубины несквозного проникания ПЭ в случае толстостенной преграды.

3) Имеется большая вероятность ошибки измерений в случае нахождения в одной плоскости с осью диаграммы направленности антенн измерителей двух и более близколетящих ПЭ.

Технической задачей предлагаемого изобретения является устранение вышеотмеченных недостатков, а также обеспечение возможности определения глубины проникания бронебойных цельнокорпусных (сплошных) калиберных или подкалиберных снарядов с отделяющимся поддоном в толстостенную преграду при неполном пробитии (застревании).

Решение поставленной задачи достигается тем, что в известном способе определения глубины проникания в преграду бронебойного цельнокорпусного (сплошного) калиберного и подкалиберного снаряда, включающем выстрел снарядом по преграде и последующее определение его скорости доплеровским локатором до и после поражения преграды, в соответствии с изобретением ось диаграммы направленности антенны локатора ориентируют под максимально малым углом к завершающей части траектории движения снаряда, скорость снаряда определяют по сигналу отраженному от его донной (хвостовой) части, а непосредственно глубину проникания определяют путем интегрирования полученной по результатам измерений зависимости скорости движения снаряда от начала торможения до нулевого значения.

Таким образом, предлагаемый способ отличается от прототипа следующими новыми признаками:

1) Ориентацией оси диаграммы направленности антенны локатора под малым углом к завершающей части траектории движения снаряда;

2) Определением скорости движения снаряда по сигналу, отраженному от его донной (хвостовой) части;

3) Получением "искомого" результата, т.е. определением глубины проникания снаряда в преграду, путем математической обработки, заключающейся в интегрировании полученной зависимости скорости движения снаряда от начала торможения при встрече с преградой до его полной остановки.

Причем, в отличие от прототипа, способ для своей реализации в качестве средства измерений требует всего один доплеровский локатор.

Ориентация диаграммы направленности антенны доплеровского локатора под максимально малым углом к завершающей части траектории движения снаряда позволит, во-первых, избежать влияния на показания локатора электромагнитного импульса от плазменного облака продуктов сгорания метательного заряда, образующегося при выстреле в области дульного среза ствола орудия и, во-вторых, фиксировать сигнал отраженный непосредственно от донной (хвостовой) части снаряда, т.е. от одной и той же неизменной по величине поверхности, что повысит точность измерений. При использовании высокочастотного (коротковолнового с длиной волны меньшей, чем калибр снаряда) локатора это позволит вести наблюдение за снарядом, уже полностью проникшем в преграду и движущемся внутри нее.

В общем случае скорость движения снаряда как материального тела описывается как

V=dS/dt,

где V - скорость снаряда, м/с;

S - перемещение, м;

t - время, с.

Тогда, зная зависимость изменения скорости от времени, перемещение можно определить как интеграл вида

,

где tн - начальный момент времени - встреча снаряда с преградой и начало торможения, с;

tк - конечный момент времени - остановка снаряда в преграде, - застревание, с.

Изобретение поясняется следующей графической информацией.

На фиг. 1 представлены стадии процесса взаимодействия снаряда с преградой при ее неполном пробивании.

На фиг. 2 изображена условная зависимость скорости движения снаряда на завершающей части траектории и при его проникании в материал преграды вплоть до полной остановки (застревании).

В качестве примера и пояснения осуществления способа на фиг. 1 (а, б) представлена схема мишенной обстановки в определенные фиксированные моменты времени. Фиг. 1,а - частичное проникание, снаряд движется внутрь преграды с замедлением; фиг. 1,б - снаряд полностью остановлен преградой.

В толстостенную преграду 1 проникает снаряд 2, скорость которого определяется по сигналу (на иллюстрации условно показан пунктирной линией), отраженному от его донной (хвостовой) части посредством доплеровского локатора 3. Ось диаграммы направленности антенны локатора 4 ориентирована под максимально малым углом α к завершающей части траектории движения снаряда 5. При проникании снаряда в преграду в ней образуется отверстие 6.

При использовании высокочастотного доплеровского локатора с длиной волны меньшей, чем калибр снаряда, процесс наблюдения за снарядом, уже полностью проникшем и движущимся в преграде, продолжается вплоть до его полной остановки (фиг. 1,б).

На фиг. 2 изображен вариант характерной получаемой по результатам измерений, графической зависимости скорости движения снаряда на завершающей части траектории и при его проникании в материал преграды вплоть до полной остановки (застревании).

Скорость снаряда изменяется от начального значения Vс, соответствующего моменту касания снарядом преграды (tн), до нулевого значения при полной остановке, в преграде (tк), соответственно в течение интервала времени от tн до tк.

Как уже выше показано, величина перемещения снаряда в преграде определяется интегралом:

.

Т.к. по результатам измерений могут быть получены как графическая, так и аналитическая зависимости Vc(t), решение данного интеграла, т.е. нахождение численного значения глубины проникания снаряда в преграду может быть выполнено либо аналитически, либо, при наличии графической зависимости, путем определения площади фигуры под кривой Vc(t) (заштрихованная область на фиг. 2).

Операция интегрирования, т.е. численного определения глубины проникания снаряда в преграду, может быть выполнена с использованием современных программных средств, что дает возможность обработки результатов испытаний практически в режиме реального времени.

Использование предлагаемого способа позволит повысить точность измерения скорости снаряда как на завершающем участке траектории перед поражением преграды, так и при его движении вглубь преграды, получить более достоверную информацию при оценке пробивного действия бронебойных цельнокорпусных (сплошных) калиберных и подкалиберных снарядов с отделяющимся поддоном, а также сократить материальные затраты на проведение испытаний.

Источники информации

1. Патент CN 103335566 A, F42B 35/00. Grid mesh target shell penetration depth testing device. 2013 г.

2. Патент CN 203534363 U, F42B 35/00. Grating net target shell penetration depth testing device. 2013 г.

3. Патент РФ №2399861, F41J 5/044. Способ измерения параметров пробития преграды метаемым элементом, например пулей либо артиллерийским снарядом, либо кумулятивной струей, и устройство, реализующее этот способ. 2009 г.

4. Патент РФ №2491501, F42B 35/00. Способ оценки пробивного действия дистанционного боеприпаса и устройство для его осуществления. 2012 г. (прототип)

Похожие патенты RU2626474C1

название год авторы номер документа
БРОНЕБОЙНЫЙ ПОДКАЛИБЕРНЫЙ СНАРЯД 2006
  • Стыров Алексей Вадимович
  • Селиванов Виктор Валентинович
  • Клименко Артем Владимирович
RU2362964C2
Бронебойный оперенный подкалиберный снаряд 2019
  • Гаршин Олег Николаевич
RU2738687C2
Бронебойный оперенный подкалиберный снаряд 2019
  • Кузнецов Николай Сергеевич
RU2720434C1
СТРЕЛОВИДНЫЙ БРОНЕБОЙНЫЙ СНАРЯД 2004
  • Аманов В.В.
  • Бутаев Б.М.
  • Есиев Р.У.
  • Косихин А.И.
  • Коробков А.С.
  • Чижевский О.Т.
  • Чмутенко В.О.
RU2265791C1
УНИТАРНЫЙ МАЛОКАЛИБЕРНЫЙ ПАТРОН 2004
  • Аманов В.В.
  • Бутаев Б.М.
  • Есиев Р.У.
  • Косихин А.И.
  • Коробков А.С.
  • Чижевский О.Т.
  • Чмутенко В.О.
RU2265787C1
БРОНЕБОЙНЫЙ ПОДКАЛИБЕРНЫЙ СНАРЯД 2014
  • Котровский Александр Александрович
RU2577613C1
Бронебойный оперенный подкалиберный снаряд 2017
  • Кузнецов Николай Сергеевич
RU2668580C1
ПУЛЯ 1998
RU2154252C1
УНИТАРНЫЙ МАЛОКАЛИБЕРНЫЙ ПАТРОН 2003
  • Бутаев Б.М.
  • Есиев Р.У.
  • Заглада В.И.
  • Смирнов А.В.
  • Чижевский О.Т.
RU2235272C1
БРОНЕБОЙНЫЙ ПОДКАЛИБЕРНЫЙ СНАРЯД 2014
  • Стыров Алексей Вадимович
  • Хмельников Евгений Александрович
  • Смагин Константин Владимирович
  • Руденко Валерий Лукич
  • Запольских Александр Васильевич
  • Фалалеев Владимир Иванович
RU2582322C1

Иллюстрации к изобретению RU 2 626 474 C1

Реферат патента 2017 года Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду

Изобретение относится к области испытания боеприпасов. Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду включает выстрел снарядом по преграде и последующее определение его скорости доплеровским локатором до и после поражения преграды. Ось диаграммы направленности антенны локатора ориентируется под максимально малым углом к завершающей части траектории движения снаряда. Скорость снаряда определяется по сигналу, отраженному от его донной хвостовой части. Глубина проникания определяется путем интегрирования полученной по результатам измерений зависимости скорости движения снаряда от начала торможения до нулевого значения. Способ позволяет повысить точность измерения скорости снаряда, получить более достоверную информацию при оценке пробивного действия снарядов. 2 ил.

Формула изобретения RU 2 626 474 C1

Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду, включающий выстрел снарядом по толстостенной преграде и последующее определение его скорости доплеровским локатором до и после поражения преграды, отличающийся тем, что ось диаграммы направленности антенны локатора ориентируют под максимально малым углом к завершающей части траектории движения снаряда, скорость снаряда определяют по сигналу, отраженному от его донной хвостовой части, а непосредственно глубину проникания определяют путем интегрирования полученной по результатам измерений зависимости скорости движения снаряда от начала торможения до нулевого значения.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626474C1

СПОСОБ ОЦЕНКИ ПРОБИВНОГО ДЕЙСТВИЯ ДИСТАНЦИОННОГО БОЕПРИПАСА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Мужичек Сергей Михайлович
  • Ефанов Василий Васильевич
  • Винокуров Владимир Иванович
  • Скрынников Андрей Александрович
  • Новиков Игорь Алексеевич
  • Жорник Кирилл Андреевич
RU2491501C1
СПОСОБ ПРОБИТИЯ ПРЕГРАДЫ КУМУЛЯТИВНЫМ ЗАРЯДОМ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1989
  • Обухов А.С.
  • Кореньков В.В.
  • Смеликов В.Г.
  • Колпаков В.И.
  • Ковалев С.А.
  • Рыжков И.В.
  • Плетнев С.Л.
RU2164656C2
СПОСОБ ОЦЕНКИ ПРОБИВНОЙ СПОСОБНОСТИ СНАРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Мужичек Сергей Михайлович
  • Ефанов Василий Васильевич
  • Лобанов Константин Николаевич
  • Керимов Геннадий Шаукатович
  • Новиков Игорь Алексеевич
RU2442952C1
CN 103335566 A, 02.10.2013
EP 277772 A2, 10.08.1988.

RU 2 626 474 C1

Авторы

Вагин Александр Васильевич

Сидоров Михаил Игоревич

Беляков Валерий Иванович

Белобородов Михаил Николаевич

Ватутин Николай Михайлович

Дмитриев Павел Юрьевич

Колтунов Владимир Валентинович

Карасёв Сергей Владимирович

Даты

2017-07-28Публикация

2016-06-20Подача