Способ и устройство передачи электрической энергии Российский патент 2017 года по МПК H02J50/12 H02J5/00 

Описание патента на изобретение RU2626815C2

Изобретение относится к электротехнике, в частности к устройствам и способам передачи электрической энергии. Технический результат состоит в повышении КПД передачи, уменьшении расходов металлов в линиях электропередачи и повышении стабильности работы системы.

Известен способ и устройство передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из двух резонансных трансформаторов и однопроводной линии электропередачи между ними, где напряжение источника питания преобразуется по частоте с обратной связью с выходного трансформатора для поддержания значения выходного напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке и обратной связью по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора (Патент №2423772 от 10.07.2011).

Известен способ и устройство передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из двух резонансных трансформаторов и однопроводной линии электропередачи между ними, где напряжение источника питания преобразуется по частоте с тремя обратными связями, первую по напряжению для поддержания значения напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, вторую обратную связь по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора и линии электропередачи и третью обратную связь для стабилизации напряжения в нагрузке (Патент №2423772 от 10.07.2011).

Недостатком известных способов является то, что резонансные трансформаторы выполнены с использованием сердечника, что накладывает ограничение на максимально передаваемую мощность и на максимально допустимое напряжение, а также увеличивает размер капитальных вложений. Также, в данных решениях, предлагается организовывать цепь обратной связи с высоковольтного вывода повышающей обмотки, что вносит искажения в систему, так как при заземлении вторичной обмотки, на ней размещается четверть волны и, соответственно, на верхнем выводе расположена пучность напряжения. Такое решение вносит дополнительную емкость и предъявляет дополнительные требования к изоляции для предотвращения пробоя. В другом варианте предлагается организовать цепь обратной связи от первичной обмотки трансформатора, что также является не самым эффективным способом по причине того, что собственные резонансные частоты первичной и вторичной обмотки могут несколько различаться, а эффективность передачи в большей мере зависит от совпадения частоты преобразователя с передающей и принимающей обмотками трансформаторов. Еще одним недостатком является то, что в резонансных системах передачи электроэнергии проходят большие токи и этот параметр также нуждается в дополнительном контроле для предотвращения аварийных ситуаций. Еще одним недостатком является то, что для стабилизации нагрузки используется цепь обратной связи от принимающего конца, что увеличивает материальные затраты и является нецелесообразным при использовании трансформаторов Тесла, так как форма и амплитуда на передающем и принимающем концах одинаковы вследствие того, что система представляет собой два идентичных четвертьволновых трансформатора, и все интересующие параметры могут сниматься на передающем конце. Также необходимо указать, что при автоподстройке частоты, при прохождении сигнала обратной связи на силовые ключи преобразователя, неминуемо присутствует задержка, которая вызывает несовпадение фаз между управляющим сигналом на силовых ключах и собственными колебаниями системы, что негативно сказывается на работе полупроводниковых приборов, так как открытие ключей происходит не в нуле тока, а в момент, когда ток имеет некоторое положительное или отрицательное значение.

Задачей предлагаемого изобретения является уменьшение расхода материалов и повышение стабильности, безопасности и КПД резонансной системы передачи электрической энергии.

В результате использования предлагаемого изобретения повышается стабильность, безопасность и КПД резонансной системы передачи электрической энергии за счет использования бессердечниковых трансформаторов с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

Технический результат достигается тем, что в предлагаемом способе передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

В другом варианте способа передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними в качестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

В другом варианте способа передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

В другом варианте способа передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

Технический результат достигается также тем, что в устройстве передачи электрической энергии, состоящем из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между ними в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора и осуществляется контроль температуры посредством датчиков температуры.

В другом варианте устройства передачи электрической энергии состоящем из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между ними в качестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора и осуществляется контроль температуры посредством датчиков температуры.

В другом варианте устройства передачи электрической энергии состоящем из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между ними в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора и осуществляется контроль температуры посредством датчиков температуры.

В другом варианте устройства передачи электрической энергии состоящем из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между нимикачестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора и осуществляется контроль температуры посредством датчиков температуры.

При передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны размещенных в пучности тока на вторичной обмотке передающего трансформатора. В предлагаемом способе передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из двух резонансных трансформаторов и однопроводной линии электропередачи между ними, в качестве трансформаторов предлагается использовать однослойные бессердечниковые трансформаторы Тесла или многослойные секционные бессердечниковые трансформаторы и учитывая уникальные эффекты проявляющиеся в данном способе, в частности, симметричная картина токов и напряжений на передающем и принимающем трансформаторе, целесообразно организовывать обратную связь по напряжению и по частоте от нижнего конца повышающей обмотки передающего трансформатора, в случае если они заземлены или подключены к изолированной емкости по средством трансформатора тока или антенны, либо от центра повышающей обмотки передающего трансформатора в случае если она изолирована от земли, так как в этом случае цепи обратной связи производят наименьшее влияние на систему передачи из-за того, что они располагаются в пучности тока и узле напряжения и исключается пробой на сигнальную цепь не зависимо от изоляции провода. Обратная связь позволяет поддерживать значения выходного напряжения в линии электропередачи на постоянном уровне, не выше допустимого, служит для синхронизации задающего генератора с резонансной частотой трансформаторов Тесла. Для предотвращения аварийных ситуаций предлагается ввести обратную связь по температуре, которая будет служить сигналом отключения линии, при превышении температуры в обмотках выше максимально допустимой. Для повышения надежности и увеличения КПД предлагается ввести блок фазовой подстройки, компенсирующий задержку сигнала обратной связи.

Сущность предлагаемого изобретения поясняется фиг. 1, 2, 3 и 4.

На фиг. 1 представлена система передачи электрической энергии по однопроводной линии с использованием однослойных бессердечниковых трансформаторов Тесла, высоковольтные обмотки которых изолированы от земли. В этой системе преобразователь частоты имеет обратную связь по напряжению, по частоте, по нагреву, а также блок фазовой подстройки.

На фиг. 2 представлена система передачи электрической энергии по однопроводной линии с использованием многослойных секционных бессердечниковых трансформаторов, высоковольтные обмотки которых изолированы от земли. В этой системе преобразователь частоты имеет обратную связь по напряжению, по частоте, по нагреву, а также блок фазовой подстройки.

На фиг. 3 представлена система передачи электрической энергии по однопроводной линии с использованием однослойных бессердечниковых трансформаторов Тесла, высоковольтные обмотки которых заземлены или подключены к изолированной емкости. В этой системе преобразователь частоты имеет обратную связь по напряжению, по частоте, по нагреву, а также блок фазовой подстройки.

На фиг. 4 представлена система передачи электрической энергии по однопроводной линии с использованием многослойных секционных бессердечниковых трансформаторов, высоковольтные обмотки которых заземлены или подключены к изолированной емкости. В этой системе преобразователь частоты имеет обратную связь по напряжению, по частоте, по нагреву, а также блок фазовой подстройки.

Устройство фиг.1 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения, частоты и контроля нагрева 3, блок фазовой коррекции сигнала обратной связи 4, трансформатор тока или антенну 5, линию обратной связи 6, линию электропередачи 7, вторичную обмотку приемного трансформатора Тесла 8, первичную обмотку приемного трансформатора Тесла 9, выпрямитель или инвертор 10, конденсатор 11, первичную обмотку передающего трансформатора Тесла 12, вторичную обмотку передающего Трансформатора Тесла 13, конденсатор приемного контура 14.

Устройство фиг. 2 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения, частоты и контроля нагрева 3, блок фазовой коррекции сигнала обратной связи 4, трансформатор тока или антенну 5, линию обратной связи 6, линию электропередачи 7, первичную обмотку приемного трансформатора Тесла 9, выпрямитель или инвертор 10, конденсатор 11, первичную обмотку передающего трансформатора Тесла 12, конденсатор приемного контура 14, вторичную обмотку приемного многослойного секционного трансформатора 15, вторичную обмотку передающего многослойного секционного 16.

Устройство фиг. 3 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения, частоты и контроля нагрева 3, блок фазовой коррекции сигнала обратной связи 4, трансформатор тока или антенну 5, линию обратной связи 6, линию электропередачи 7, вторичную обмотку приемного трансформатора Тесла 8, первичную обмотку приемного трансформатора Тесла 9, выпрямитель или инвертор 10, конденсатор 11, первичную обмотку передающего трансформатора Тесла 12, вторичную обмотку передающего Трансформатора Тесла 13, конденсатор приемного контура 14, изолированную емкость или заземление 17.

Устройство фиг. 4 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения, частоты и контроля нагрева 3, блок фазовой коррекции сигнала обратной связи 4, трансформатор тока или антенну 5, линию обратной связи 6, линию электропередачи 7, первичную обмотку приемного трансформатора Тесла 9, выпрямитель или инвертор 10, конденсатор 11, первичную обмотку передающего трансформатора Тесла 12, конденсатор приемного контура 14, вторичную обмотку приемного трансформатора многослойного секционного трансформатора 15, вторичную обмотку передающего многослойного секционного 16, изолированную емкость или заземление 17.

Устройство передачи электрической энергии работает следующим образом.

Электрическая энергия от электрической сети, солнечной батареи, аккумуляторной батареи и т.п. подается на преобразователь частоты, затем на последовательный резонансный контур, состоящий из конденсатора (может отсутствовать) 11 и первичной обмотки трансформатора 12. Высоковольтная обмотка 13 (15) резонансного трансформатора своим высоковольтным выводом соединена с однопроводной линией 7. Нижний вывод высоковольтных обмоток 8 (16) и 13 (15) трансформаторов заземлен (Фиг. 3 и 4) либо изолирован от земли (Фиг. 1 и 2). Резонансная частота высокочастотного резонансного трансформатора или контура составляет 1…350 кГц. Напряжение однопроводной линии 7 составляет 0,5…1000 кВ. К однопроводной линии электропередачи подключена одна или несколько нагрузок. Входная вторичная обмотка приемного трансформатора 8 (16) соединена одним выводом с линией электропередачи. Выходная первичная обмотка 9 трансформатора соединена последовательно с конденсатором 14, образуя последовательный резонансный контур или без него, далее с выпрямителем 10 или с инвертором, со стандартным выходным напряжением. Преобразователь частоты состоит из блока управления 1, силового блока 2, блока обратной связи 3, блока фазовой подстройки 4. Блок обратной связи 3 подключен посредством трансформатора тока или антенны 5 к заземленному концу высоковольтной обмотки, где находится пучность тока (фиг. 3, 4), или к средней точке высоковольтной обмотки, в случае если заземление отсутствует и пучность тока располагается по середине обмотки (фиг. 1, 2) и синхронизирует рабочую частоту преобразователя частоты с резонансной частотой контура, стабилизирует выходное напряжение, обеспечивает контроль нагрева посредством датчиков температуры установленных на первичной обмотке 12 и (или) на транзисторах силового блока 2. Блок фазовой подстройки 4 дополнительно стабилизирует работу системы, обеспечивая открытие силовых ключей в момент нуля тока в резонансном контуре.

Похожие патенты RU2626815C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2003
  • Стребков Д.С.
RU2245598C1
Стенд для исследования резонансной системы передачи электрической энергии 2017
  • Трубников Владимир Захарович
  • Стребков Дмитрий Семенович
  • Юферев Леонид Юрьевич
RU2673427C1
Способ и устройство передачи электрической энергии 2020
  • Стребков Дмитрий Семенович
  • Рощин Олег Алексеевич
  • Гусаров Валентин Александрович
RU2753642C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2014
  • Трубников Владимир Захарович
  • Стребков Дмитрий Семенович
  • Некрасов Алексей Иосифович
  • Руцкой Андрей Сергеевич
  • Моисеев Михаил Викторович
RU2577522C2
Способ и устройство для передачи электрической энергии (варианты) 2019
  • Трубников Олег Владимирович
  • Трубников Владимир Захарович
RU2718779C1
Способ и устройство для передачи электрической энергии 2019
  • Трубников Владимир Захарович
  • Тарасов Андрей Борисович
  • Трубников Олег Владимирович
RU2718781C1
СИСТЕМА ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ 2017
  • Трубников Владимир Захарович
  • Трубников Олег Владимирович
RU2662796C1
РЕЗОНАНСНЫЙ УСИЛИТЕЛЬ МОЩНОСТИ И СПОСОБ УСИЛЕНИЯ В НЕМ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ 2017
  • Стребков Дмитрий Семенович
RU2656975C1
Устройство и способ усиления электрических сигналов (варианты) 2017
  • Стребков Дмитрий Семенович
RU2644119C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2003
  • Стребков Д.С.
  • Авраменко С.В.
  • Некрасов А.И.
RU2255406C2

Иллюстрации к изобретению RU 2 626 815 C2

Реферат патента 2017 года Способ и устройство передачи электрической энергии

Изобретение относится к электротехнике, к трансформации и передаче электрической энергии. Технический результат состоит в уменьшении расхода материалов и повышении стабильности, безопасности и кпд за счет использования бессердечниковых трансформаторов с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора при осуществлении контроля температуры посредством датчиков температуры. Передача электрической энергии осуществляется передачей резонансных колебаний повышенной частоты в цепи, состоящей из преобразователя частоты, повышающего однослойного бессердечникового трансформатора Тесла, однопроводной линии электропередачи и понижающего однослойного бессердечникового трансформатора Тесла. Оба трансформатора согласованы по частоте. Могут быть использованы незаземленные однослойные трансформаторы Тесла, а также заземленные или незаземленные многослойные секционные трансформаторы. Преобразователь частоты имеет обратную связь по напряжению для поддержания значения выходного напряжения в линии электропередачи на уровне, не превышающем максимально допустимый, обратную связь по частоте для синхронизации задающего генератора с собственной резонансной частотой трансформаторов, обратную связь по нагреву для предотвращения аварийных ситуаций и блок фазовой подстройки сигнала обратной связи. 8 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 626 815 C2

1. Способ передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен, и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

2. Способ передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен, и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

3. Способ передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли, и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

4. Способ передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли, и при передаче электрической энергии осуществляется обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, при этом осуществляется контроль температуры посредством датчиков температуры.

5. Устройство передачи электрической энергии, состоящее из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен, и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, и осуществляется контроль температуры посредством датчиков температуры.

6. Устройство передачи электрической энергии, состоящее из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец заземлен, и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, и осуществляется контроль температуры посредством датчиков температуры.

7. Устройство передачи электрической энергии, состоящее из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется трансформатор Тесла, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли, и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, и осуществляется контроль температуры посредством датчиков температуры.

8. Устройство передачи электрической энергии, состоящее из преобразователя частоты, резонансных трансформаторов и однопроводной линии электропередачи между ними, отличающийся тем, что в качестве трансформаторов используется многослойный секционный бессердечниковый трансформатор, в котором один из концов вторичной обмотки соединен с передающим проводом, а второй конец изолирован от земли, и в преобразователе реализована обратная связь с фазовой автоподстройкой частоты и контролем напряжения посредством обработки сигналов с трансформатора тока или антенны, размещенных в пучности тока на вторичной обмотке передающего трансформатора, и осуществляется контроль температуры посредством датчиков температуры.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626815C2

УСТРОЙСТВО ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В РАКЕТНО-КОСМИЧЕСКИХ КОМПЛЕКСАХ (ВАРИАНТЫ) 2012
  • Юферев Леонид Юрьевич
  • Рощин Олег Алексеевич
  • Межирицкий Ефим Леонидович
  • Морозов Владимир Владимирович
  • Жучков Александр Георгиевич
  • Стребков Дмитрий Семенович
RU2521108C2
СПОСОБ И УСТРОЙСТВО ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ (ВАРИАНТЫ) 2010
  • Юферев Леонид Юрьевич
  • Стребков Дмитрий Семенович
RU2423772C1
Способ разведки грунтов 1956
  • Токарев А.К.
SU106458A1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ (ВАРИАНТЫ) 2010
  • Стребков Дмитрий Семенович
  • Юферев Леонид Юрьевич
RU2474031C2
ЭЛЕКТРИЧЕСКИЙ ВЫСОКОЧАСТОТНЫЙ РЕЗОНАНСНЫЙ ТРАНСФОРМАТОР (ВАРИАНТЫ) 2009
  • Стребков Дмитрий Семенович
  • Трубников Владимир Захарович
  • Некрасов Алексей Иосифович
  • Некрасов Антон Алексеевич
  • Рощин Олег Алексеевич
  • Юферев Леонид Юрьевич
RU2423746C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2003
  • Стребков Д.С.
RU2245598C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2000
  • Стребков Д.С.
  • Авраменко С.В.
  • Некрасов А.И.
RU2172546C1
Устройство для определения частоты переменного тока 1957
  • Филиппов Н.А.
SU114236A1
Обогатительное устройство для анализа примесей в газовом хроматографе 1976
  • Аксель-Рубинштейн Владимир Зиновьевич
  • Кваша Василий Иванович
  • Нелюбов Сергей Константинович
  • Быстров Игорь Васильевич
SU593138A1

RU 2 626 815 C2

Авторы

Стребков Дмитрий Семенович

Руцкой Андрей Сергеевич

Трубников Владимир Захарович

Моисеев Михаил Викторович

Даты

2017-08-02Публикация

2015-10-14Подача