КОНСТРУКЦИЯ КОЧЕТОВА ПОЛА НА ВИБРОДЕМПФИРУЮЩЕМ ОСНОВАНИИ Российский патент 2017 года по МПК E04F15/18 E04B1/62 

Описание патента на изобретение RU2626843C1

Изобретение относится к строительству и может быть использовано для виброизоляции, звукоизоляции в закрытых помещениях при установке и монтаже вентиляционных агрегатов, компрессоров, генераторов и другого оборудования.

Известна конструкция пола на упругом основании (патент РФ №2383700, (прототип)), включающая несущие плиты с отверстиями, упругий элемент и плиты пола.

Недостатком известного технического решения является сравнительно низкие вибропоглощающие и звукоизолирующие свойства.

Технический результат - повышение вибропоглощающих и звукоизолирующих свойств.

Это достигается тем, что в конструкции пола на вибродемпфирующем основании, содержащем несущую плиту перекрытия, связанную со стеной, расположенное на несущей плите упругое основание, она дополнительно содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, которые выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен и базовой несущей плите, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.

На фиг. 1 схематически показана конструкция пола на вибродемпфирующем основании, на фиг. 2 - схема вибродемпфирующей вставки в полостях базовых плит, на фиг. 3 - вариант вибродемпфирующей вставки.

Конструкция пола на вибродемпфирующем основании (фиг. 1) содержит установочную плиту 1, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 4 межэтажного перекрытия с полостями 5 через слои вибродемпфирующего материала 3 и гидроизоляционного материала 2 с зазором 6 относительно несущих стен 7 производственного помещения. Чтобы обеспечить эффективную виброизоляцию установочной плиты 1 по всем направлениям слои вибродемпфирующего материала 3 и гидроизоляционного материала 2 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 7 и базовой несущей плите 4 перекрытия. Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 5 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 7 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих плит используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».

В качестве звукопоглощающего материала может быть использован жесткий пористый материал, например пеноалюминий или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин 30-45%.

В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин 0,3-2,5 мм (не показано).

Возможен вариант (фиг. 2), когда в полостях 5 базовых плит 4 межэтажного перекрытия расположены вибродемпфирующие вставки (фиг. 2), выполненные в виде цилиндра 8 из жесткого вибродемпфирующего материала, например пластиката типа «Агат», «Антивибрит», «Швим», внутри которого осесимметрично и коаксиально расположен упругий сердечник 9, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски 10, при этом крайние диски закреплены «заподлицо» с цилиндром 8 из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовых плит 4.

Возможен вариант, когда вибродемпфирующие вставки (фиг. 3), расположенные в полостях базовых плит межэтажного перекрытия, выполнены в виде цилиндра 8 из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник 9, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски 10, 11, 13, при этом крайние диски 10 и 11 закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты 4, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра. Упругий сердечник 9, осесимметрично и коаксиально расположенный внутри цилиндра 1 вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня 14 и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана. Демпфирующие диски, жестко закрепленные по всей длине упругого сердечника 9 вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков 12 из жесткого вибродемпфирующего материала и демпфирующей части, выполненной в виде диска 15 из вибродемпфирующего материала, например полиуретана.

Конструкция пола на вибродемпфирующем основании работает следующим образом.

При установке виброактивного оборудования на плиту 1 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 1, а также за счет слоя вибродемпфирующего материала 3, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60-80 кг/м3.

Вибродемпфирующие вставки способствуют поглощению виброакустической энергии межэтажного перекрытия на средних и высоких частотах, а, следовательно, снижению уровней шума в самом здании.

Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглощающего материала, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор шумопоглощающего материала. Причем иглопробивные маты состоят из волокон, имеющих диаметр не ниже предельно допустимого гигиенического значения, не содержат канцерогенных асбестовых и керамических волокон, а в их состав не входят такие вредные связующие, как фенол. Поэтому с уверенностью их можно отнести к классу теплозвукоизоляционных материалов, соответствующих высоким гигиеническим и противопожарным требованиям. Добавим, что стекловолокнистые материалы имеют низкую теплопроводность, не поддаются влиянию пара, масла, воды, обладают высокой температурной стабильностью.

Возможен вариант, когда полости вибродемпфирующей вставки (не показано), выполненной в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник с демпфирующими дисками, заполнены полиуретаном или вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.

Возможен вариант, когда полости вибродемпфирующей вставки (не показано), выполненной в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник с демпфирующими дисками, при этом упругий сердечник, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана, а демпфирующие диски, жестко закрепленные по всей длине упругого сердечника вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков из жесткого вибродемпфирующего материала и демпфирующей части, выполненной в виде диска из вибродемпфирующего материала, например полиуретана, заполнены полиуретаном или вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.

Возможен вариант, когда полости базовой плиты перекрытия заполнены вибродемпфирующим материалом, выполненным в виде шнековой вставки (не показано) из упругого полимера, например полиуретана, заполненной вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.

Возможен вариант, когда шнековая вставка (не показано) в полостях базовой плиты перекрытия выполнена из упругого материала, например пружинистой стали, заполненной вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.

Похожие патенты RU2626843C1

название год авторы номер документа
КОНСТРУКЦИЯ КОЧЕТОВА ПОЛА НА УПРУГОМ ОСНОВАНИИ 2016
  • Кочетов Олег Савельевич
RU2622939C1
ВИБРОДЕМПФИРУЮЩАЯ ВСТАВКА КОЧЕТОВА ДЛЯ ПОЛЫХ ЭЛЕМЕНТОВ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ 2016
  • Кочетов Олег Савельевич
RU2622940C1
ВИБРОДЕМПФИРУЮЩАЯ ВСТАВКА ДЛЯ ПОЛЫХ ЭЛЕМЕНТОВ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ 2017
  • Кочетов Олег Савельевич
RU2642686C1
ВИБРОДЕМПФИРУЮЩАЯ ВСТАВКА ДЛЯ ПОЛОСТЕЙ ПЛИТ МЕЖЭТАЖНОГО ПЕРЕКРЫТИЯ 2014
  • Кочетов Олег Савельевич
RU2626817C2
ВИБРОДЕМПФИРУЮЩАЯ ВСТАВКА КОЧЕТОВА ДЛЯ ПОЛОСТЕЙ ПЛИТ МЕЖЭТАЖНОГО ПЕРЕКРЫТИЯ 2014
  • Кочетов Олег Савельевич
RU2626818C2
КОНСТРУКЦИЯ КОЧЕТОВА ПОЛА НА УПРУГОМ ОСНОВАНИИ 2014
  • Кочетов Олег Савельевич
RU2573886C1
ВИБРОДЕМПФИРУЮЩАЯ ВСТАВКА ДЛЯ ПЛИТ МЕЖЭТАЖНОГО ПЕРЕКРЫТИЯ 2017
  • Кочетов Олег Савельевич
RU2651561C1
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ДЛЯ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ 2017
  • Кочетов Олег Савельевич
RU2665726C1
ВИБРОДЕМПФИРУЮЩАЯ ВСТАВКА ДЛЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ 2017
  • Кочетов Олег Савельевич
RU2642189C1
ВИБРОДЕМПФИРУЮЩАЯ ВСТАВКА ДЛЯ ПОЛОСТЕЙ ПЛИТ МЕЖЭТАЖНОГО ПЕРЕКРЫТИЯ 2017
  • Кочетов Олег Савельевич
RU2651560C1

Иллюстрации к изобретению RU 2 626 843 C1

Реферат патента 2017 года КОНСТРУКЦИЯ КОЧЕТОВА ПОЛА НА ВИБРОДЕМПФИРУЮЩЕМ ОСНОВАНИИ

Изобретение относится к строительству и может быть использовано для виброизоляции, звукоизоляции в закрытых помещениях при установке и монтаже вентиляционных агрегатов, компрессоров, генераторов и другого оборудования. Конструкция пола на вибродемпфирующем основании содержит несущую базовую плиту межэтажного перекрытия с полостями, связанную со стеной, расположенное на несущей плите упругое основание. Упругое основание дополнительно содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, которые выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен и базовой несущей плите. Полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером. Установочная плита выполнена из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин: 30-45%, или из иглопробивных матов типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, или из твердых вибродемпфирующих материалов, например пластиката, или из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60-80 кг/м3. В полостях базовых плит межэтажного перекрытия расположены вибродемпфирующие шнековые вставки, выполненные из упругого полимера, например полиуретана, или из упругого материала, например пружинистой стали, заполненные вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной. Изобретение позволяет повысить вибропоглощающие и звукоизолирующие свойства пола. 3 ил.

Формула изобретения RU 2 626 843 C1

Конструкция пола на вибродемпфирующем основании, содержащая несущую базовую плиту межэтажного перекрытия с полостями, связанную со стеной, расположенное на несущей плите упругое основание, упругое основание дополнительно содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, которые выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен и базовой несущей плите, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, при этом установочная плита выполнена из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин 30-45%, или из иглопробивных матов типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, или из твердых вибродемпфирующих материалов, например пластиката, или из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60-80 кг/м3, отличающаяся тем, что в полостях базовых плит межэтажного перекрытия расположены вибродемпфирующие шнековые вставки, выполненные из упругого полимера, например полиуретана, или из упругого материала, например пружинистой стали, заполненные вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626843C1

КОНСТРУКЦИЯ ПОЛА НА УПРУГОМ ОСНОВАНИИ 2009
  • Кочетов Олег Савельевич
RU2383700C1
ПЛИТА ПЕРЕКРЫТИЯ 1993
  • Шогенов Сергей Хасанбиевич
RU2054099C1
ВИБРОДЕМПФИРУЮЩИЙ ЗВУКОИЗОЛЯЦИОННЫЙ ЭЛЕМЕНТ 0
  • Н. Никольский, Л. П. Тимофеенко, Э. А. Биевецкий А. Г. Светлов
  • Научно Исследовательский Институт Строительной Физики
SU358484A1
RU 106269 U1, 10.07.2011
US 5653099 A, 05.08.1997..

RU 2 626 843 C1

Авторы

Кочетов Олег Савельевич

Даты

2017-08-02Публикация

2016-01-27Подача