Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке мощных плотных карбонатных залежей нефти с применением многостадийного гидравлического разрыва пласта (МГРП) в режиме кислотно-гравитационного дренирования (КГД).
Известен способ гидроразрыва пласта в горизонтальном стволе скважины, включающий бурение скважины, цементирование горизонтального ствола скважины, перфорацию и формирование трещин с помощью гидроразрыва пласта в горизонтальном стволе скважины последовательно, начиная с конца, дальнего от оси вертикального ствола скважины, сообщающего горизонтальный ствол скважины с продуктивным пластом, при этом при проведении очередного гидравлического разрыва каждый перфорированный участок, через который производят гидроразрыв пласта, изолируют от остальной части колонны пакерами. Согласно изобретению, бурение горизонтального ствола скважины осуществляют в нефтенасыщенной части продуктивного пласта с цементированием кольцевого пространства между обсадной колонной и горной породой горизонтального ствола скважины, а перфорацию, азимутально сориентированную интервалами, производят с помощью гидромеханического щелевого перфоратора за одну спускоподъемную операцию, после чего спускают пакеры, отсекая каждый интервал, равный длине сформировавшейся щели, от остальной части колонны, а гидроразрыв пласта в горизонтальной части ствола скважины производят последовательно, начиная с дальнего от оси вертикального ствола скважины перфорированного участка горизонтального ствола скважины, причем гидромеханическую щелевую перфорацию выполняют двухстороннюю по формированию щелей, которые расположены относительно друг друга на 180° в вертикальной плоскости напротив друг друга, относительно оси горизонтального ствола скважины в одном интервале, либо выполняют одностороннюю гидромеханическую щелевую перфорацию с поворотом на 180° в вертикальной плоскости относительно оси горизонтального ствола скважины, поочередно через каждый последующий интервал - в шахматном порядке, равный длине сформированной щели, либо при малой толщине продуктивного пласта и при наличии активной подошвенной воды производят одностороннюю гидромеханическую щелевую перфорацию в направлении кровли пласта. Дополнительно проводят водоизоляционные работы на каждом из интервалов в отдельности через трещину разрыва (патент РФ №2401942, кл. Е21В 43/26, опубл. 20.10 2010).
Недостатком известного способа является неконтролируемое развитие трещины в высоту, что при последующей эксплуатации скважины приводит к ее быстрому обводнению. Разработка нефтяных залежей таким способом характеризуется невысокой нефтеотдачей.
Наиболее близким по технической сущности к предлагаемому способу является способ поинтервального гидравлического разрыва карбонатного пласта в горизонтальном стволе скважины с подошвенной водой, включающий бурение горизонтального ствола скважины в продуктивном пласте с цементированием кольцевого пространства между обсадной колонной и горной породой, спуск в горизонтальный ствол скважины на колонне труб перфоратора и выполнение перфорационных отверстий в горизонтальном стволе скважины, направленных азимутально вверх, спуск колонны труб с пакером в скважину, посадку пакера, закачку по колонне труб жидкости разрыва и формирование трещин гидравлического разрыва пласта в горизонтальном стволе скважины. В известном способе горизонтальный ствол скважины в продуктивном пласте бурят параллельно направлению максимального напряжения горных пород, затем в горизонтальный ствол скважины на колонне гибких труб - ГТ спускают перфоратор и выполняют перфорационные отверстия в горизонтальном стволе скважины в один ряд, извлекают колонну ГТ с перфоратором из скважины, демонтируют перфоратор, после чего оснащают снизу колонну ГТ надувным пакером, спускают колонну ГТ до забоя осевым перемещением колонны ГТ от устья к забою на расстояние 50 м со скоростью 0,5 м/мин и одновременной закачкой вязкого геля с плотностью, большей плотности воды, в объеме, обеспечивающем заполнение кислотным вязкоупругим составом нижней части сечения горизонтального ствола скважины на 2/3 диаметра горизонтального ствола, сажают надувной пакер, производят ГРП закачкой загущенного кислотного состава с последующим заполнением гелированной жидкостью с деструктором перфорационных отверстий и верхней части сечения горизонтального ствола скважины на 1/3 диаметра горизонтального ствола, производят распакеровку надувного пакера, далее производят ГРП в оставшейся части горизонтального ствола, для этого вышеописанные операции повторяют, начиная с осевого перемещения колонны ГТ от устья к забою до заполнения обработанного интервала гелированной жидкостью с деструктором, по окончании выполнения поинтервального ГРП производят освоение скважины свабированием, при этом вязкоупругий гель разжижается при контакте с пластовыми флюидами и деблокирует дренируемые участки горизонтального ствола скважины и извлекается из скважины (патент РФ №2558058, кл. Е21В 43/27, опубл. 27.07.2015 - прототип).
Известный способ позволяет управлять направлением роста трещины, однако не учитывает расположения соседних скважин, которые могут привести к отрицательному эффекту от гидроразрыва. Также не учитывается энергетическое состояние залежи при разработке данным способом. Гидроразрыв приводит к резкому повышению дебитов, но снижает конечную нефтеотдачу.
В предложенном изобретении решается задача повышения нефтеотдачи мощных плотных карбонатных залежей нефти.
Задача решается тем, что в способе разработки плотных карбонатных залежей нефти, включающем бурение скважин с горизонтальным окончанием - СГО, цементирование в горизонтальном стволе кольцевого пространства между обсадной колонной и коллектором, вторичное вскрытие залежи с ориентированным направлением перфорационных отверстий в один ряд, проведение МГРП, применение пакеров для разделения горизонтальных стволов на участки, отбор продукции из горизонтальных скважин, согласно изобретению выбирают залежь со средней толщиной нефтенасыщенного коллектора H ≥ 50 м и средней абсолютной проницаемостью не более 2 мД, залежь разбуривают парами СГО, стволы которых располагают параллельно в вертикальной плоскости на расстоянии по вертикали h = (0,5-0,9)·Н, причем верхнюю СГО выполняют с двумя расходящимися под углом β = 30-60° горизонтальными стволами, нижнюю СГО выполняют с одним горизонтальным стволом, направленным перпендикулярно вектору главного максимального напряжения коллектора и являющимся биссектрисой угла β в плане, длину каждого горизонтального ствола выполняют равной l ≥ 4·h, в верхней СГО в каждом горизонтальном стволе перфорационные отверстия ориентируют вниз, а в горизонтальном стволе нижней СГО – вверх, во всех скважинах проводят кислотный МГРП с расстоянием между ступенями не более 50 м, причем местоположение каждой соответствующей ступени МГРП в верхней и нижней скважинах не совпадает в структурном плане, скорость и объем закачиваемой кислоты определяют из условий, во-первых, образования структуры растворения карбонатов, представляющей из себя разветвленные полости, во-вторых, полудлиной трещин a = (0,2-1,0)·l·sin(β/2) и высотой трещин с = (0,5-1,0)·h, после МГРП нижние СГО осваивают и пускают в добычу, при каждом снижении дебита нефти нижних добывающих скважин ниже экономически рентабельного значения в соответствующих верхних нагнетательных скважинах проводят большеобъемные кислотные обработки, причем перед подачей кислоты в нагнетательную скважину закачивают воду c общей минерализацией не более 1 г/л и частицами, устойчивыми к воздействию применяемых кислот, с диметрами, превышающими средний диаметр поровых каналов коллектора, воду с частицами закачивают до тех пор, пока давление закачки не вырастит как минимум в пять раз, таким образом, залежь разрабатывают в режиме кислотно-гравитационного дренирования – КГД.
Сущность изобретения
Под плотными нефтяными залежами здесь понимаются залежи неоднородных слабопроницаемых коллекторов с проницаемостью, варьирующейся в пределах от нескольких единиц до нескольких сотен мкД (10-6 мкм2). Небольшие пропластки или зоны также могут составлять несколько единиц мД (10-3 мкм2). Примером таких залежей могут служить доманиковые отложения на территории Республики Татарстан.
На нефтеотдачу мощных плотных карбонатных залежей нефти существенное влияние оказывает эффективность создаваемой системы разработки. Основным объектом воздействия для повышения нефтеотдачи является скелет породы – повышение его проницаемости. Для этого широкое применение нашли технологии гидроразрыва пласта (ГРП), для карбонатных пород – кислотные ГРП. Однако гидроразрыв в таких залежах приводит к кратковременному эффекту ввиду достаточно быстрого падения пластового давления. При этом ввиду преимущественной гидрофобности породы и низкой его проницаемости закачать в нее пластовую или сточную воду для целей поддержания пластового давления достаточно сложно. Увеличение давления нагнетания приводит лишь к авто-ГРП. Таким образом, существующие технические решения не в полной мере позволяют эффективно разрабатывать указанные залежи. В предложенном изобретении решается задача повышения нефтеотдачи мощных плотных карбонатных залежей нефти. Задача решается следующим образом.
На фиг. 1 представлено схематическое изображение вертикального разреза участка нефтяной залежи с профилем СГО. На фиг. 2 приведено схематическое изображение участка нефтяной залежи в плане с размещением СГО. Обозначения: 1 – участок нефтенасыщенной залежи, 2 –нагнетательные СГО, 3 – добывающие СГО, 4 – перфорационные отверстия нагнетательных скважин 2, 5 – перфорационные отверстия добывающих скважин 3, 6 – колонны труб, 7 – фильтры, 8 – пакера в горизонтальных стволах между ступенями МГРП, 9 – пакера в месте соединения колонны труб 6 с фильтром 7, H – средняя толщина коллектора, h – расстояние между горизонтальными стволами скважин 2 и 3 в вертикальной плоскости, l – длина горизонтальных стволов скважин 2 и 3, b – расстояние между ступенями МГРП, β – угол в плане между горизонтальными стволами нагнетательной СГО 2, wд – трещины МГРП добывающих скважин 3, wн – трещины МГРП нагнетательных скважин 3, с – высота трещины МГРП, a – полудлина трещины МГРП.
Способ реализуют следующим образом.
На участке 1 залежи нефти, представленной плотным карбонатным типом коллектора, средняя абсолютная проницаемость которого составляет не более 2 мД, а средняя толщина H ≥ 50 м, бурят пары СГО 2 и 3 (фиг. 1, 2). Горизонтальные стволы скважин 2 и 3 размещают параллельно друг другу в вертикальной плоскости, причем горизонтальные стволы нагнетательных скважин 2 проводят над горизонтальными стволами добывающих скважин 3 на расстоянии по вертикали h = (0,5-0,9)·Н. Каждую верхнюю нагнетательную СГО 2 выполняют с двумя расходящимися под углом β = 30-60° горизонтальными стволами. Каждую нижнюю добывающую СГО 3 выполняют с одним горизонтальным стволом, направленным перпендикулярно вектору главного максимального напряжения σmax коллектора и являющимся биссектрисой угла β в плане. Данное направление горизонтальных стволов относительно σmax выбрано из соображений максимального охвата пласта трещинами последующего МГРП. Длину каждого горизонтального ствола скважин 2 и 3 выполняют равной l ≥ 4·h.
Далее СГО 2 и 3 обсаживают, цементируют кольцевое пространство между обсадной колонной и коллектором. Горизонтальные стволы вторично вскрывают с ориентированным направлением перфорационных отверстий в один ряд. В верхних СГО 2 в обеих горизонтальных стволах перфорационные отверстия ориентируют вниз, получая перфорационные отверстия 4. В нижних СГО 3 в горизонтальном стволе перфорационные отверстия ориентируют вверх, получая перфорационные отверстия 5. Это позволяет исключить развитие трещин выше и ниже продуктивной толщины пласта. Для проведения данных операций применяют перфораторы, спускаемые в горизонтальные стволы на колоннах гибких труб.
В скважинах 2 и 3 в каждом горизонтальном стволе проводят кислотный МГРП по любой из известных технологий от «носка» горизонтального ствола к его «пятке». Расстояние b между ступенями устанавливают не более 50 м. Местоположение каждой соответствующей ступени МГРП в добывающих 3 и нагнетательных 2 скважинах не совпадает в структурном плане. Скорость и объем закачиваемой кислоты определяют из условий:
- образования структуры растворения карбонатов, представляющей из себя разветвленные полости,
- полудлиной трещин a = (0,2-1,0)·l·sin(β/2),
- высотой трещин с = (0,5-1,0)·h.
В результате кислотного МГРП получают систему разветвленных трещин для добывающих скважин 3 – wдn, для нагнетательных скважин 2 – wнn, где n – номер ступени МГРП.
Согласно постановлению Правительства РФ № 700-Р, при значениях проницаемости 2 мД и менее коллекторы относятся к категории трудноизвлекаемых запасов и для них действуют пониженные ставки налога на добычу полезных ископаемых (НДПИ), что позволяет проводить мероприятия по бурению СГО с проведением МГРП эффективно, с точки зрения экономики. Согласно расчетам, при толщине коллектора H менее 50 м предлагаемый способ КГД значительно снижает нефтеотдачу ввиду уменьшения охвата залежи. Расстояние h между горизонтальными стволами по вертикали определено из условий максимального охвата по толщине трещинами МГРП с учетом последующей эффективной разработки. Согласно расчетам, при величине h < 0,5·Н участки пласта выше нагнетательной скважины и ниже добывающей не охвачены воздействием, а при h > 0,9·Н появляется большой риск вскрытия зон не коллектора.
Угол β между стволами нагнетательной скважины 2 определен из условий максимального охвата пласта по площади трещинами МГРП с учетом последующей эффективной разработки. Согласно расчетам, при величине β < 30° эффективность КГД снижается ввиду интерференции трещин МГРП соседних стволов нагнетательной скважины 2, а при β > 60° трещины МГРП охватывают значительно меньшую площадь пласта, что снижает нефтеотдачу. При этом размещение горизонтального ствола добывающей скважины 3 в плане непосредственно между стволами нагнетательной скважины 2 (биссектриса угла β) позволяет максимально использовать режим КГД.
Аналогично, с целью достижения большего охвата, определено значение длин l горизонтальных стволов. Плотные коллекторы характеризуются высокой зональной неоднородностью. Согласно расчетам, при l < 4·h ввиду вскрытия значительного количества зон не коллектора эффективная длина скважины сильно снижается, что приводит к низкому охвату и невысокой нефтеотдаче.
Согласно исследованиям, для коллекторов с проницаемостью менее 2 мД, при расстоянии между ступенями МГРП более 50 м, охват пласта значительно снижается, что также уменьшает нефтеотдачу. Структура трещин кислотного МГРП, представляющая из себя разветвленные полости, наиболее подходит для слабопроницаемых карбонатных коллекторов и характеризуется максимальным охватом залежи.
Ввиду того, что местоположение каждой соответствующей ступени МГРП в добывающей и нагнетательной СГО не совпадает в структурном плане, высота трещин с ступеней МГРП, согласно расчетам, должна покрывать расстояние h между скважинами, но не быть больше её, т.к. при с > 1,0·h возникает опасность выхода трещина за пределы пласта, что может привести к обводнению скважины. При этом если с < 0,5·h, то охват по толщине снижается, что приводит к низкой нефтеотдаче. Аналогично подбиралась, согласно расчетам, оптимальная полудлина a трещин. При a < 0,2·l·sin(β/2) охват по площади снижается, что приводит к низкой нефтеотдаче. При a > 1,0·l·sin(β/2) возникает опасность соединения трещин МГРП соседних скважин.
После МГРП в горизонтальные стволы скважин 2 и 3 спускают колонны труб 6 с фильтрами 7 и установленными на фильтрах 7 пакерами 8 для герметизации пространства между эксплуатационной колонной и фильтром 7. Причем в нагнетательную скважину 2 спускают две колонны труб 6 с фильтрами 7 – в каждый из горизонтальных стволов. Пакеры 8 устанавливают в точках горизонтальных стволов между ступенями МГРП. В месте соединения колонны труб 6 с фильтром 7 также устанавливают пакер 9 для герметизации межтрубного пространства. Таким образом, горизонтальные столы разделяют на участки, с возможностью отключения определенных участков ствола пакерами 8.
Далее добывающие СГО 3 промывают, осваивают и пускают в добычу. При каждом снижении дебита нефти одной из добывающих скважин 3 ниже экономически рентабельного значения в соответствующих нагнетательных СГО 2 в каждом стволе проводят большеобъемные кислотные обработки. Перед подачей кислоты в нагнетательные скважины 2 закачивают воду c общей минерализацией не более 1 г/л и взвешенными частицами, устойчивыми к воздействию применяемых кислот. Диметр добавляемых в воду частиц подбирают с превышением среднего диаметра поровых каналов коллектора. Воду с частицами закачивают до тех пор, пока давление закачки не вырастит как минимум в пять раз, т.к. при меньшем значении, согласно исследованиям, блокировка трещин частицами недостаточна.
Добавление твердых взвешенных частиц в закачиваемую воду с диаметром частиц большим, чем средний диаметр поровых каналов коллектора, приводит к тому, что поверхность как естественных, так и трещин МГРП покрывается частицами. В результате трещины кольматируются, соответственно закачиваемая впоследствии кислота не позволяет ей уходить в ту же самую трещину, развивая ее, а образует новую. Закачиваемые частицы, во избежание растворения кислотой, должны быть устойчивыми к ее воздействию (например, пелитовая фракция кварцевого песка). При этом закачка частиц в низкоминерализованной воде (c общей минерализацией не более 1 г/л), согласно исследованиям, позволяет постепенно гидрофилизировать преимущественно гидрофобный карбонатный коллектор. В результате повышается пропитка коллектора и закачиваемая вода через трещины уходит в матрицу коллектора или в более мелкие трещины, оставляя на поверхности трещин МГРП частицы. При закачке пластовой воды (высокоминерализованной) данный процесс не происходит, соответственно закачиваемая вода приводит к росту существующих трещин, что значительно снижает нефтеотдачу.
Таким образом, залежь нефти разрабатывают в режиме кислотно-гравитационного дренирования – КГД.
Разработку ведут до полной экономически рентабельной выработки залежи нефти.
Результатом внедрения данного способа является повышение нефтеотдачи мощных плотных карбонатных залежей нефти.
Примеры конкретного выполнения способа
Пример 1. На участке 1 плотной залежи нефти, представленном карбонатным типом коллектора, средняя абсолютная проницаемость которого составляет 2 мД, а средняя толщина H = 50 м, бурят пару СГО 2 и 3 (фиг. 1, 2). Горизонтальные стволы скважин 2 и 3 размещают параллельно друг другу в вертикальной плоскости, причем горизонтальные стволы нагнетательных скважин 2 проводят над горизонтальными стволами добывающих скважин 3 на расстоянии по вертикали h = 0,5·Н = 0,5·50 = 25 м. Каждую верхнюю нагнетательную СГО 2 выполняют с двумя расходящимися под углом β = 60° горизонтальными стволами. Каждую нижнюю добывающую СГО 3 выполняют с одним горизонтальным стволом, направленным перпендикулярно вектору главного максимального напряжения σmax коллектора и являющимся биссектрисой угла β в плане. Длину каждого горизонтального ствола скважин 2 и 3 выполняют равной l = 4·h = 4·25 = 100 м.
Далее СГО 2 и 3 обсаживают, цементируют кольцевое пространство между обсадной колонной и коллектором. Горизонтальные стволы вторично вскрывают с ориентированным направлением перфорационных отверстий в один ряд. В верхних СГО 2 в обеих горизонтальных стволах перфорационные отверстия ориентируют вниз, получая перфорационные отверстия 4. В нижних СГО 3 в горизонтальном стволе перфорационные отверстия ориентируют вверх, получая перфорационные отверстия 5. Это позволяет исключить развитие трещин выше и ниже продуктивной толщины пласта. Для проведения данных операций применяют перфораторы, спускаемые в горизонтальные стволы на колоннах гибких труб. В качестве перфоратора применяют перфорационную систему ПК114КЛ ORION (ЗАО «Взрывгеосервис», Республика Башкортостан, г. Нефтекамск, ул. Магистральная, 19).
В скважинах 2 и 3 в каждом горизонтальном стволе проводят кислотный МГРП по технологии со сдвоенными пакерами, спускаемыми на гибких трубах, с проведением разрывов от «носка» горизонтального ствола к его «пятке». Расстояние b между ступенями МГРП определяют расчетами оптимального охвата на гидродинамической модели, b=20 м. Местоположение каждой ступени МГРП определяют таким образом, чтобы каждая соответствующая ступень МГРП в добывающей 3 и нагнетательной 2 скважинах не совпадала в структурном плане. Таким образом, получают пять ступеней МГРП.
Лабораторными исследованиями определяют оптимальное давление (скорость) закачки кислоты для образования разветвленных полостей. В качестве кислоты используют 22%-ную соляную кислоту. Моделированием определяют оптимальную полудлину a = 0,2·l·sin(β/2) = 0,2·100·sin(60/2) = 10 м и высоту трещин с = 0,5·h = 0,5·25 = 12,5 м.
Далее осуществляют кислотный МГРП, в результате которого получают систему разветвленных трещин для добывающей СГО 3 – wдn, для нагнетательной СГО 2 – wнn, где n – номер ступени МГРП.
После МГРП в горизонтальные стволы скважин 2 и 3 спускают колонны труб 6 с фильтрами 7 и установленными на фильтрах 7 пакерами 8. Причем в нагнетательную скважину 2 спускают две колонны труб 6 с фильтрами 7 – в каждый из стволов. Пакеры 8 устанавливают в точках горизонтальных стволов между ступенями МГРП. В месте соединения колонны труб 6 с фильтром 7 также устанавливают механический пакер 9 для герметизации межтрубного пространства. Таким образом, горизонтальные столы разделяют на участки, с возможностью отключения определенных участков ствола пакерами 8.
Далее добывающую СГО 3 промывают, осваивают и пускают в добычу. При снижении через 8 месяцев дебита нефти добывающей СГО 3 до 0,5 т/сут, т.е. ниже экономически рентабельного значения, в нагнетательной СГО 2 в каждом стволе проводят большеобъемные кислотные обработки. Перед подачей кислоты в нагнетательные скважины 2 закачивают воду c общей минерализацией 1 г/л и взвешенными частицами, устойчивыми к воздействию применяемых кислот, – пелитовую фракцию кварцевого песка. Диметр добавляемых в воду частиц подбирают с превышением среднего диаметра поровых каналов коллектора. Воду с частицами закачивают до тех пор, пока давление закачки не вырастит в пять раз.
Операции по повторной закачке низкоминерализованной воды с частицами и большеобъемной кислотной обработке нагнетательной СГО 2 повторяют еще 10 раз в течение всего периода разработки участка 1 залежи при снижении дебита нефти добывающей СГО 3 до 0,5 т/сут.
Разработку ведут до полной экономически рентабельной выработки участка 1 плотной карбонатной залежи нефти.
Пример 2. Выполняют как пример 1. Средняя толщина коллектора H = 120 м, горизонтальные стволы СГО 2 и 3 размещают на расстоянии по вертикали h = 0,9·Н = 0,9·120 ≈ 110 м. Каждую верхнюю нагнетательную СГО 2 выполняют с двумя расходящимися под углом β = 30° горизонтальными стволами. Длину каждого горизонтального ствола скважин 2 и 3 выполняют равной l = 5·h = 5·110 = 550 м. Расстояние между ступенями МГРП b=50 м. Таким образом, получают по 11 ступеней МГРП на каждой скважине. Моделированием определяют оптимальную полудлину a = 1,0·l·sin(β/2) = 1,0·550·sin(30/2) ≈ 142 м и высоту трещин с = 1,0·h = 1,0·110 = 110 м.
В результате разработки, которую ограничили снижением дебита нефти добывающей СГО 3 менее 0,5 т/сут при невозможности его увеличения закачкой кислоты в нагнетательную СГО 2, было добыто 52,3 тыс.т нефти, коэффициент нефтеизвлечения (КИН) составил 0,250 д.ед. По прототипу при прочих равных условиях было добыто 31,0 тыс.т нефти, КИН составил 0,148 д.ед. Прирост КИН по предлагаемому способу – 0,102 д.ед.
Предлагаемый способ позволяет повысить охват и коэффициент нефтеизвлечения мощных плотных карбонатных залежей нефти за счет применения кислотного МГРП и последующего КГД.
Применение предложенного способа позволит решить задачу повышения нефтеотдачи мощных плотных карбонатных залежей нефти.
название | год | авторы | номер документа |
---|---|---|---|
Способ разработки сланцевых карбонатных нефтяных залежей | 2016 |
|
RU2612061C1 |
Способ разработки плотных карбонатных коллекторов | 2016 |
|
RU2616016C9 |
Способ разработки сланцевых карбонатных нефтяных коллекторов | 2016 |
|
RU2616052C1 |
Способ разработки карбонатных сланцевых нефтяных отложений | 2016 |
|
RU2612060C9 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ ГОРИЗОНТАЛЬНЫМИ СКВАЖИНАМИ С ПРОВЕДЕНИЕМ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА | 2013 |
|
RU2528309C1 |
СПОСОБ РАЗРАБОТКИ НИЗКОПРОНИЦАЕМОЙ НЕФТЯНОЙ ЗАЛЕЖИ | 2013 |
|
RU2526937C1 |
СПОСОБ РАЗРАБОТКИ НИЗКОПРОНИЦАЕМОЙ НЕФТЯНОЙ ЗАЛЕЖИ ГОРИЗОНТАЛЬНЫМИ СКВАЖИНАМИ С ПОДДЕРЖАНИЕМ ПЛАСТОВОГО ДАВЛЕНИЯ | 2013 |
|
RU2526430C1 |
СПОСОБ РАЗРАБОТКИ НИЗКОПРОНИЦАЕМОЙ НЕФТЯНОЙ ЗАЛЕЖИ ГОРИЗОНТАЛЬНЫМИ СКВАЖИНАМИ НА ЕСТЕСТВЕННОМ РЕЖИМЕ | 2013 |
|
RU2528757C1 |
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ НЕФТЯНОГО ПЛАСТА | 2014 |
|
RU2551612C1 |
Способ повышения эффективности разработки слабопроницаемых нефтяных залежей | 2019 |
|
RU2709260C1 |
Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки мощных плотных карбонатных залежей нефти с применением многостадийного гидравлического разрыва пласта (МГРП) в режиме кислотно-гравитационного дренирования (КГД). Способ включает бурение скважин с горизонтальным окончанием - СГО, цементирование в горизонтальном стволе кольцевого пространства между обсадной колонной и коллектором, вторичное вскрытие залежи с ориентированным направлением перфорационных отверстий в один ряд, проведение МГРП, применение пакеров для разделения горизонтальных стволов на участки, отбор продукции из горизонтальных скважин. Согласно изобретению, выбирают залежь со средней толщиной нефтенасыщенного коллектора H ≥ 50 м и средней абсолютной проницаемостью не более 2 мД, залежь разбуривают парами СГО, стволы которых располагают параллельно в вертикальной плоскости на расстоянии по вертикали h = (0,5-0,9)·Н, причем верхнюю СГО выполняют с двумя расходящимися под углом β = 30-60° горизонтальными стволами, нижнюю СГО выполняют с одним горизонтальным стволом, направленным перпендикулярно вектору главного максимального напряжения коллектора и являющимся биссектрисой угла β в плане. Длину каждого горизонтального ствола выполняют равной l ≥ 4·h. В верхней СГО в каждом горизонтальном стволе перфорационные отверстия ориентируют вниз, а в горизонтальном стволе нижней СГО – вверх. Во всех скважинах проводят кислотный МГРП с расстоянием между ступенями не более 50 м. Причем местоположение каждой соответствующей ступени МГРП в верхней и нижней скважинах не совпадает в структурном плане. Скорость и объем закачиваемой кислоты определяют из условий, во-первых, образования структуры растворения карбонатов, представляющей из себя разветвленные полости, во-вторых, полудлиной трещин a = (0,2-1,0)·l·sin(β/2) и высотой трещин с = (0,5-1,0)·h. После МГРП нижние СГО осваивают и пускают в добычу. При каждом снижении дебита нефти нижних добывающих скважин ниже экономически рентабельного значения в соответствующих верхних нагнетательных скважинах проводят большеобъемные кислотные обработки. Причем перед подачей кислоты в нагнетательную скважину закачивают воду c общей минерализацией не более 1 г/л и частицами, устойчивыми к воздействию применяемых кислот, с диаметрами, превышающими средний диаметр поровых каналов коллектора, воду с частицами закачивают до тех пор, пока давление закачки не вырастит как минимум в пять раз, таким образом, залежь разрабатывают в режиме КГД. Технический результат заключается в повышении нефтеотдачи мощных плотных карбонатных залежей нефти. 2 ил.
Способ разработки плотных карбонатных залежей нефти, включающий бурение скважин с горизонтальным окончанием - СГО, цементирование в горизонтальном стволе кольцевого пространства между обсадной колонной и коллектором, вторичное вскрытие залежи с ориентированным направлением перфорационных отверстий в один ряд, проведение многостадийного гидравлического разрыва пласта - МГРП, применение надувных пакеров для разделения горизонтальных стволов на участки, отбор продукции из горизонтальных скважин, отличающийся тем, что выбирают залежь со средней толщиной нефтенасыщенного коллектора H ≥ 50 м и средней абсолютной проницаемостью не более 2 мД, залежь разбуривают парами СГО, стволы которых располагают параллельно в вертикальной плоскости на расстоянии по вертикали h = (0,5-0,9)·Н, причем верхнюю СГО выполняют с двумя расходящимися под углом
СПОСОБ ПОИНТЕРВАЛЬНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА КАРБОНАТНОГО ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ С ПОДОШВЕННОЙ ВОДОЙ | 2014 |
|
RU2558058C1 |
СПОСОБ ПРОВЕДЕНИЯ НАПРАВЛЕННОГО ГИДРОРАЗРЫВА ПЛАСТА В ДВУХ ГОРИЗОНТАЛЬНЫХ СТВОЛАХ СКВАЖИНЫ | 2009 |
|
RU2401943C1 |
СПОСОБ РАЗРАБОТКИ НИЗКОПРОНИЦАЕМОЙ НЕФТЯНОЙ ЗАЛЕЖИ ГОРИЗОНТАЛЬНЫМИ СКВАЖИНАМИ С ПОДДЕРЖАНИЕМ ПЛАСТОВОГО ДАВЛЕНИЯ | 2013 |
|
RU2526430C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ ГОРИЗОНТАЛЬНЫМИ СКВАЖИНАМИ С ПРОВЕДЕНИЕМ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА | 2013 |
|
RU2528309C1 |
СПОСОБ РАЗРАБОТКИ МНОГОКРАТНЫМ ГИДРОРАЗРЫВОМ НИЗКОПРОНИЦАЕМОГО НЕФТЯНОГО ПЛАСТА | 2014 |
|
RU2549942C1 |
WO 2010123566 A1, 28.10.2010. |
Авторы
Даты
2017-08-07—Публикация
2016-05-08—Подача