Изобретение относится к технике преобразования световой энергии в электрическую.
Известна резистивная оптопара, состоящая из источника света, фотопреобразователя и корпуса, между которыми имеется оптическая связь и обеспечена электрическая изоляция. В качестве фотопреобразователя в этой оптопаре используется фоторезистор или полупроводниковый резистор. Источником света в резистивной оптопаре может служить сверхминиатюрная лампочка накаливания (Иванов В.И. Полупроводниковые оптоэлектронные приборы: Справочник / В.И. Иванов, А.И. Аксенов, A.M. Юшин - 2-е изд. перераб. и доп. - М.: Энергоатоиздат, 1989. - 448 с, с. 309.
Это устройство обладает низкой выходной мощностью из-за использования источника света с малой мощностью и фотопреобразователя, рассчитанного на преобразования светового излучения малой мощности и низкой электрической прочности из-за малого расстояния между источником света и фотопреобразователем.
Техническим результатом изобретения является расширение технологических возможностей оптопары путем увеличения ее мощности и электрической прочности.
Задача, на решение которой направлено техническое решение, достигается тем, что в оптопаре с катадиоптрической линзой, содержащей источник света, фотопреобразователь, корпус, в качестве источника света использована шаровая ксеноновая лампа, в качестве фотопреобразователя батарея солнечных элементов, корпус выполнен в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала, дополнительно включены сферическое зеркало и линза с катадиоптрической насадкой, сферическое зеркало, линза с катадиоптрической насадкой и батарея солнечных элементов расположены на одной оптической оси, совпадающей с осью корпуса, выполненного в виде трубы, в одном торце трубы расположена линза с катадиоптрической насадкой, сферическое зеркало и шаровая ксеноновая лампа, а во втором торце - батарея солнечных элементов, а шаровая ксеноновая лампа расположена между сферическим зеркалом и линзой с катадиоптрической насадкой.
На чертеже показана предлагаемая оптопара с катадиоптрической линзой.
Она содержит шаровую ксеноновую лампу 1, зеркало 2, линзу с катадиоптрической насадкой 3, корпус 4, батарею солнечных элементов 5.
Зеркало 2 и линза 3 с катадиоптрической насадкой расположены на одной оптической оси, совпадающей с осью корпуса 4, выполненного в виде трубы, в одном торце которого расположена линза 3 с катадиоптрической насадкой, а во втором торце батарея солнечных элементов 5, а лампа 1 расположена между сферическим зеркалом 2 и линзой 3 с катадиоптрической насадкой.
При отсутствии электрического тока через шаровую ксеноновую лампу 1 на выходе батареи солнечных элементов 5 отсутствует электрический ток.
При прохождении электрического тока через шаровую ксеноновую лампу 1 оптическое излучение от нее поступает на батарею солнечных элементов 5. В батарее солнечных элементов 5 световое излучение преобразовывается в электрический ток и через выводы батареи солнечных элементов передается далее потребителю.
Стрелками показан ход световых лучей.
Увеличение электрической прочности оптопары достигается за счет того, что благодаря предлагаемой конструкции оптопары увеличивается расстояние между источником света, в качестве которого используется шаровая ксеноновая лампа 1, и ее фотопреобразователем, в качестве которого используется батарея солнечных элементов 5.
Увеличение выходной мощности оптопары достигается за счет использования в ее составе в качестве источника света шаровой ксеноновой лампы 1, а в качестве фотопреобразователя батареи солнечных элементов 5.
При мощности ксеноновой лампы 150 Вт, при КПД преобразовании излучения лампы солнечными элементами ~ 70% мощность электрического тока на выходе оптопары может быть ~ 80 Вт с учетом потерь, возникающих при передаче оптического излучения от шаровой ксеноновой лампы к батарее солнечных элементов. Для этого в качестве солнечных элементов, прежде всего, могут быть использованы многослойные структуры, обеспечивающие каскадное преобразование оптического излучения. Для этих целей могут быть использованы трех- и четырехкомпонентные соединения элементов III и V групп Периодической системы. Кроме того, могут быть использованы гетероструктуры с вариозной базой, когда на выходе создается широкозонное окно, соответствующее максимальной ширине спектра преобразовываемого излучения, а база имеет переменное по глубине значение (благодаря плавному изменению состава, уменьшающегося по мере углубления). Такие структуры можно получить, используя двойные, тройные и четвертные соединения на базе компонент, входящих в состав GaAs [Кирин И.Г. Потери энергии в источниках вторичного электропитания с системами гальванической развязки «Источник оптического излучения фотоэлектрический преобразователь» / Кирин И.Г. // Интеллект. Инновации. Инвестиции. 2014. № 4. - С. 153-157]:
Таким образом, по сравнению с прототипом, заявленная оптопара обладает более высокой выходной мощностью и более высокой электрической прочностью.
название | год | авторы | номер документа |
---|---|---|---|
ОПТОПАРА | 2016 |
|
RU2633934C1 |
ОПТОПАРА С ШАРОВОЙ ЛАМПОЙ | 2016 |
|
RU2618964C1 |
ОПТОПАРА С ТРУБЧАТОЙ КСЕНОНОВОЙ ЛАМПОЙ | 2017 |
|
RU2672784C1 |
ОПТОПАРА С ЭЛЛИПСОИДАЛЬНЫМ ОТРАЖАТЕЛЕМ | 2017 |
|
RU2670706C9 |
ОПТОПАРА С ПОЛУПРОВОДНИКОВЫМ ЛАЗЕРОМ | 2021 |
|
RU2752615C1 |
КОМПАКТНОЕ УСТРОЙСТВО ВВОДА ИЗЛУЧЕНИЯ ШАРОВЫХ ЛАМП В СВЕТОВОД | 2018 |
|
RU2696936C1 |
УСТРОЙСТВО ВВОДА ИЗЛУЧЕНИЯ ШАРОВЫХ ЛАМП В СВЕТОВОД | 2018 |
|
RU2681668C1 |
СПОСОБ ИССЛЕДОВАНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ВОСПРИИМЧИВОСТИ ФОТОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ В СОСТАВЕ СОЛНЕЧНЫХ БАТАРЕЙ К ОПТИЧЕСКОМУ ИЗЛУЧЕНИЮ | 2013 |
|
RU2565331C2 |
ИМИТАТОР СОЛНЕЧНОГО ИЗЛУЧЕНИЯ | 2008 |
|
RU2380663C1 |
УСТРОЙСТВО СОЛНЕЧНОГО ОСВЕЩЕНИЯ "ГЕЛИОЛАМПА" | 2011 |
|
RU2483242C2 |
Изобретение предназначено для преобразования световой энергии в электрическую. Оптопара содержит источник света в виде шаровой ксеноновой лампы, фотопреобразователь в виде батареи солнечных элементов и корпус в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала. В оптопару дополнительно включены сферическое зеркало и линза с катадиоптрической насадкой. Сферическое зеркало, линза с катадиоптрической насадкой и батарея солнечных элементов расположены на одной оптической оси, совпадающей с осью корпуса, выполненного в виде трубы, в одном торце трубы расположена линза с катадиоптрической насадкой, сферическое зеркало и шаровая ксеноновая лампа, расположенная между сферическим зеркалом и линзой с катадиоптрической насадкой. Во втором торце расположена батарея солнечных элементов. Технический результат - расширение технологических возможностей оптопары путем увеличения ее мощности и электрической прочности. 1 ил.
Оптопара с катадиоптрической линзой, содержащая источник света, фотопреобразователь, корпус, отличающаяся тем, что в качестве источника света использована шаровая ксеноновая лампа, в качестве фотопреобразователя - батарея солнечных элементов, корпус выполнен в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала, дополнительно включены сферическое зеркало и линза с катадиоптрической насадкой, сферическое зеркало, линза с катадиоптрической насадкой и батарея солнечных элементов расположены на одной оптической оси, совпадающей с осью корпуса, выполненного в виде трубы, в одном торце трубы расположена линза с катадиоптрической насадкой, сферическое зеркало и шаровая ксеноновая лампа, а во втором торце - батарея солнечных элементов, а шаровая ксеноновая лампа расположена между сферическим зеркалом и линзой с катадиоптрической насадкой.
JPS 5669607 A, 11.06.1981 | |||
US 5408563 A, 18.04.1995 | |||
WO 2016000923 A1, 07.01.2016 | |||
US 2012082413 A1, 05.04.2012 | |||
ФОТОЛЮМИНЕСЦЕНТНЫЙ ИЗЛУЧАТЕЛЬ, ПОЛУПРОВОДНИКОВЫЙ ФОТОЭЛЕМЕНТ И ОПТРОН НА ИХ ОСНОВЕ | 2004 |
|
RU2261502C1 |
Авторы
Даты
2017-08-08—Публикация
2016-07-11—Подача