УСТРОЙСТВО ВИЗУАЛИЗАЦИИ ИЗЛУЧЕНИЯ И СИСТЕМА ОБНАРУЖЕНИЯ ИЗЛУЧЕНИЯ Российский патент 2017 года по МПК H01L27/00 

Описание патента на изобретение RU2627929C2

Уровень техники

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к устройству визуализации излучения и к системе обнаружения излучения.

Описание предшествующего уровня техники

[0002] В качестве устройства визуализации, используемого для диагностики методом медицинской визуализации или неразрушающей проверки посредством рентгеновских лучей, введено в практическое использование устройство визуализации излучения, которое использует подложку на основе матрицы, включающую в себя пиксельную матрицу, сформированную посредством комбинирования элементов-переключателей, таких как TFT (тонкопленочные транзисторы) и элементов преобразования, таких как элементы фотоэлектрического преобразования. Такое устройство визуализации излучения зачастую выполняет операцию визуализации синхронно с облучением излучением посредством генератора излучения. Синхронизация выполняется в основном при двух тактированиях. Первое тактирование представляет собой тактирование обнаружения облучения излучением посредством генератора излучения и начала операции накопления устройства визуализации излучения. Выложенный патент Японии номер 2012-15913 раскрывает элемент обнаружения излучения, допускающий обнаружение присутствия/отсутствия облучения излучением без использования сигнала синхронизации. При уведомлении относительно изменения режима визуализации, устройство визуализации излучения переходит из состояния готовности в состояние ожидания обнаружения излучения и определяет присутствие/отсутствие облучения излучением.

[0003] Второе тактирование представляет собой тактирование формирования инструкции прекращения облучения излучением в генератор излучения, соответствующего накопленной экспозиционной дозе излучения из генератора излучения в датчик. Устройство, выполненное с возможностью выполнять синхронизацию согласно этим тактированиям, называется прибором AEC (с автоматическим управлением экспозицией), который управляет дозой пропускаемого излучения. Выложенный патент Японии номер 2006-334154 раскрывает коррекцию дозы излучения с использованием сигналов из пикселов ROI (исследуемой области), полученной посредством флюорографии, чтобы добиваться четкого рентгеновского изображения.

[0004] Для того чтобы обнаружить начало облучения излучением из генератора излучения, необходимо непрерывно отслеживать сигнал из элемента обнаружения излучения, как описано в выложенном патенте Японии номер 2012-15913. Более конкретно, для того чтобы обнаружить сигнал, выводимый из элемента обнаружения излучения, схема, используемая для того, чтобы определять присутствие/отсутствие облучения излучением, должна непрерывно работать в течение времени от нескольких секунд до нескольких минут. Помимо этого, для того обнаружить экспозиционную дозу излучения (дозу излучения) в исследуемой области (ROI), обработка должна выполняться для каждой ROI, как описано в выложенном патенте Японии номер 2006-334154. В случае если один элемент обнаружения служит в качестве элемента обнаружения для обнаружения присутствия/отсутствия облучения излучением и элемента обнаружения для обнаружения экспозиционной дозы излучения в ROI, если компоновка элементов обнаружения оптимизирована с возможностью определять присутствие/отсутствие облучения излучением, пространственное разрешение может быть коротким при обнаружении дозы излучения. С другой стороны, если компоновка элементов обнаружения оптимизирована с возможностью определять дозу излучения, число ROI увеличивается, и выходные сигналы из элементов обнаружения рассеиваются для каждой ROI, и может быть невозможным получать достаточный уровень сигнала для того, чтобы определять начало облучения излучением.

Сущность изобретения

[0005] Первый аспект настоящего изобретения предоставляет устройство визуализации излучения для определения присутствия или отсутствия облучения излучением и определения дозы излучения, причем устройство визуализации излучения включает в себя узел датчиков, включающий в себя пиксельную матрицу, выполненную с возможностью получать сигнал изображения, указывающий обнаруженное излучение, и множество элементов обнаружения, размещаемых в пиксельной матрице и выполненных с возможностью обнаруживать излучение, и схему считывания, выполненную с возможностью считывать сигнал изображения из узла датчиков, при этом схема считывания включает в себя схему обработки сигналов, выполненную с возможностью комбинировать и обрабатывать сигналы из множества элементов обнаружения при определении присутствия или отсутствия облучения излучением и обрабатывать сигнал для каждого элемента обнаружения либо комбинировать и обрабатывать сигналы из некоторого числа элементов обнаружения из множества элементов обнаружения, при этом упомянутое число меньше числа элементов обнаружения, которые содержат множество элементов обнаружения при определении дозы излучения.

[0006] Второй аспект настоящего изобретения предоставляет систему обнаружения излучения, содержащую источник излучения для формирования излучения и вышеуказанное устройство визуализации излучения.

[0007] Дополнительные признаки настоящего изобретения должны становиться очевидными из нижеприведенного описания вариантов осуществления (со ссылкой на прилагаемые чертежи).

Краткое описание чертежей

[0008] Фиг. 1 является видом, показывающим пример компоновки устройства визуализации излучения.

[0009] Фиг. 2 является принципиальной схемой, показывающей компоновку устройства визуализации излучения согласно первому варианту осуществления настоящего изобретения.

[0010] Фиг. 3 является временной диаграммой устройства визуализации излучения согласно первому варианту осуществления настоящего изобретения.

[0011] Фиг. 4 является видом, показывающим пример соединения между схемой считывания и несущей подложкой устройства визуализации излучения согласно первому варианту осуществления настоящего изобретения.

[0012] Фиг. 5A-5C являются видами, показывающими пример компоновок пикселов устройства визуализации излучения согласно первому варианту осуществления настоящего изобретения.

[0013] Фиг. 6 является принципиальной схемой, показывающей компоновку устройства визуализации излучения согласно второму варианту осуществления настоящего изобретения.

[0014] Фиг. 7 является временной диаграммой устройства визуализации излучения согласно второму варианту осуществления настоящего изобретения.

[0015] Фиг. 8 является видом, показывающим пример компоновки пиксела устройства визуализации излучения согласно второму варианту осуществления настоящего изобретения.

[0016] Фиг. 9 является принципиальной схемой, показывающей компоновку устройства визуализации излучения согласно третьему варианту осуществления настоящего изобретения.

[0017] Фиг. 10 является временной диаграммой устройства визуализации излучения согласно третьему варианту осуществления настоящего изобретения.

[0018] Фиг. 11 является принципиальной схемой, показывающей компоновку модификации устройства визуализации излучения согласно третьему варианту осуществления настоящего изобретения.

[0019] Фиг. 12 является принципиальной схемой, показывающей компоновку устройства визуализации излучения согласно четвертому варианту осуществления настоящего изобретения.

[0020] Фиг. 13 является временной диаграммой устройства визуализации излучения согласно четвертому варианту осуществления настоящего изобретения.

[0021] Фиг. 14 является принципиальной схемой, показывающей компоновку устройства визуализации излучения согласно пятому варианту осуществления настоящего изобретения.

[0022] Фиг. 15 является временной диаграммой устройства визуализации излучения согласно пятому варианту осуществления настоящего изобретения.

[0023] Фиг. 16 является видом, показывающим пример компоновки системы обнаружения излучения.

Подробное описание вариантов осуществления

[0024] Первый вариант осуществления

(a) Компоновка устройства визуализации излучения

Ниже описывается компоновка устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 1-5C. Устройство 200 визуализации излучения включает в себя несущую подложку 100, на которой монтируется узел датчиков, включающий в себя, по меньшей мере, первый пиксел 101 и второй пиксел 121 (обнаруживающий пиксел). Второй пиксел представляет собой обнаруживающий пиксел. Первый пиксел 101 представляет собой пиксел, который выводит сигнал, который должен преобразовываться в изображение излучения, и включает в себя элемент 102 преобразования и элемент-переключатель 103. Обнаруживающий пиксел 121 представляет собой пиксел, который выводит сигнал, используемый для того, чтобы определять присутствие/отсутствие (т.е. присутствие или отсутствие) облучения излучением и определять экспозиционную дозу излучения (дозу излучения), в дополнение к сигналу, который должен преобразовываться в изображение излучения. Обнаруживающий пиксел 121 включает в себя элемент 122 обнаружения и элемент-переключатель 123 для элемента обнаружения в дополнение к элементу 102 преобразования и элементу-переключателю 103. Устройство 200 визуализации излучения включает в себя узел 223 обнаружения, включающий в себя возбуждающую схему 221, которая возбуждает узел датчиков, и схему 222 считывания, которая выводит электрический сигнал из узла датчиков в качестве данных изображений. Возбуждающая схема 221 управляет выбранным состоянием и невыбранным состоянием каждого элемента-переключателя, размещаемого в несущей подложке 100.

[0025] Как показано на фиг. 2, схема 222 считывания включает в себя контактные выводы 107 входа сигналов изображения, первый входной сигнальный контактный вывод 120 и вторые входные сигнальные контактные выводы 117. Схема 222 считывания включает в себя первую схему обработки сигналов, которая работает при определении присутствия/отсутствия облучения излучением, и вторую схему обработки сигналов, которая работает при определении дозы излучения. Более конкретно, в схеме 222 считывания, контактный вывод 107 входа сигналов изображения или второй входной сигнальный контактный вывод 117 соединяется с инвертирующим входным контактным выводом каждого операционного усилителя 150. Инвертирующий входной контактный вывод операционного усилителя 150 или 154 соединяется с выходным контактным выводом через конденсатор обратной связи, и неинвертирующий входной контактный вывод соединяется с произвольным фиксированным потенциалом, так что схема выступает в качестве преобразователя зарядного напряжения. Аналого-цифровой преобразователь 153 соединяется со следующим каскадом операционных усилителей 150 через схемы 151 дискретизации и запоминания и мультиплексоры 152. Сигнальные заряды из контактных выводов 107 входа сигналов изображения и вторых входных сигнальных контактных выводов 117 преобразуются в цифровой сигнал посредством аналого-цифрового преобразователя 153. Аналогично, в схеме 222 считывания, первый входной сигнальный контактный вывод 120 соединяется с инвертирующим входным контактным выводом операционного усилителя 154. Аналого-цифровой преобразователь 157 соединяется со следующим каскадом операционного усилителя 154 через схему 155 дискретизации и запоминания и мультиплексор 156. Сигнальные заряды из первого входного сигнального контактного вывода 120 преобразуются в цифровой сигнал посредством аналого-цифрового преобразователя 157.

[0026] В этом варианте осуществления, схемы, выполненные с возможностью обрабатывать сигналы, разделены таким образом, что выходные сигналы из контактных выводов 107 входа сигналов изображения и вторых входных сигнальных контактных выводов 117 обрабатываются посредством аналого-цифрового преобразователя 153, а выходной сигнал из первого входного сигнального контактного вывода 120 обрабатывается посредством аналого-цифрового преобразователя 157. В этом варианте осуществления, схемы от первого входного сигнального контактного вывода 120 до аналого-цифрового преобразователя 157 соответствуют первой схеме обработки сигналов и монтируются на печатной плате 503. Дополнительно, в этом варианте осуществления, схемы от контактных выводов 107 входа сигналов изображения и вторых входных сигнальных контактных выводов 117 до аналого-цифрового преобразователя 153 соответствуют второй схеме обработки сигналов и монтируются на интегральной схеме 501, размещенной на гибкой подложке 502. Вторая схема обработки сигналов по отдельности обрабатывает сигналы из линий 110 сигналов обнаружения и преобразует их в цифровые данные. Устройство 200 визуализации излучения дополнительно включает в себя узел 224 обработки сигналов, который обрабатывает и выводит данные изображений из узла 223 обнаружения, и схему 225 управления, которая подает управляющий сигнал в каждый составляющий элемент, чтобы управлять работой узла 223 обнаружения. Устройство 200 визуализации излучения также включает в себя схему 226 электропитания, которая подает напряжение смещения и мощность в каждую схему. Узел 224 обработки сигналов принимает информацию линии 106 сигналов изображения или линии 110 сигналов обнаружения из схемы 222 считывания и отправляет информацию в управляющий компьютер (не показан) или схему 225 управления. Управляющий компьютер (не показан) или схема 225 управления отправляет управляющий сигнал на основе информации в возбуждающую схему 221 или внешний генератор 227 излучения. Альтернативно, внешний генератор 227 излучения может получать информацию схемы 225 управления и управлять формированием излучения.

[0027] Схема 226 электропитания включает в себя схему регулятора, которая принимает мощность из внешнего источника питания или внутреннего аккумулятора (не показан) и подает требуемую мощность в узел датчиков, возбуждающую схему 221, схему 222 считывания и т.п. Следует отметить, что хотя каждое из возбуждающей схемы 221, схемы 222 считывания, узла 224 обработки сигналов, схемы 225 управления и схемы 226 электропитания указывается посредством одного блока, это не означает, что каждая схема формируется из одной интегральной схемы. Каждая схема может формироваться из множества интегральных схем. Альтернативно, все схемы могут предоставляться на одной интегральной схеме. Схемы разделены для удобства описания. Тем не менее, одна схема может служить в качестве множества схем, или схемы могут размещаться по отдельности. В компоновке, показанной на фиг. 1, узел 224 обработки сигналов, схема 225 управления и схема 226 электропитания монтируются на печатной плате 229. Возбуждающая схема 221 и схема 222 считывания предоставляются на печатных платах 230 и 503 и гибкой подложке 502, соответственно. Печатные платы 230 и 503 соединяются с узлом датчиков на несущей подложке 100 через гибкую подложку 502. Разумеется, вышеприведенное описание при необходимости также может применяться к другим вариантам осуществления настоящего изобретения.

[0028] (b) Схемная компоновка

Далее описываются компоновки пиксела и обнаруживающего пиксела устройства визуализации излучения согласно этому варианту осуществления. Как показано на фиг. 2, множество пикселов и периферийных схем размещается в устройстве визуализации излучения согласно этому варианту осуществления. Узел датчиков, включающий в себя пиксельную матрицу с множеством пикселов 101 и обнаруживающих пикселов 121, размещаемых в матрице, предоставляется на несущей подложке 100. Каждый пиксел 101 выполнен с возможностью выводить электрический сигнал, соответствующий излучению или свету, и включает в себя элемент 102 преобразования, который преобразует излучение или свет в заряды, и элемент-переключатель 103, который выводит электрический сигнал, соответствующий сформированным зарядам, в сигнальную линию. В этом варианте осуществления, пиксел 101 включает в себя, в качестве элемента 102 преобразования, сцинтиллятор, который преобразует излучение в свет, и элемент фотоэлектрического преобразования, который преобразует свет в заряды. Тем не менее, настоящее изобретение не ограничено этим. Элемент фотоэлектрического преобразования, который преобразует свет, преобразованный посредством сцинтиллятора, в заряды, или элемент прямого преобразования, который непосредственно преобразует излучение в заряды, может использоваться в качестве элемента 102 преобразования. Пиксел 101 включает в себя, в качестве элемента-переключателя 103, TFT (тонкопленочный транзистор) из аморфного кремния или поликристаллического кремния и предпочтительно использует TFT из поликристаллического кремния. Кремний проиллюстрирован в качестве полупроводникового материала. Тем не менее, настоящее изобретение не ограничено этим, и может использоваться другой полупроводниковый материал, к примеру, германий.

[0029] Первый главный электрод элемента-переключателя 103 электрически соединяется с первым электродом элемента 102 преобразования, и линия 108 смещения электрически соединяется со вторым электродом элемента 102 преобразования. Линия 108 смещения обычно соединяется со вторыми электродами множества элементов 102 преобразования, размещаемых вдоль столбца. Линия 108 смещения, размещаемая в каждом столбце, обычно соединяется с линиями смещения, размещаемыми вдоль строк, и соединяется с контактным выводом 109 для подачи питания смещения схемы 226 электропитания, чтобы принимать напряжение смещения. Линия 106 сигналов изображения электрически соединяется со вторым главным электродом элемента-переключателя 103. Линия 106 сигналов изображения обычно соединяется со вторыми главными электродами элементов-переключателей 103 пикселов, размещаемых вдоль столбца. Линия 106 сигналов изображения размещается для каждого столбца пикселов. Каждая линия 106 сигналов изображения электрически соединяется с контактным выводом 107 входа сигналов изображения внешней схемы 222 считывания.

[0030] Возбуждающая линия 104 электрически соединяется с управляющим электродом элемента-переключателя 103 пиксела 101. Возбуждающая линия 104 обычно соединяется с управляющими электродами элементов-переключателей 103 пикселов 101, размещаемых вдоль строки. Управляющие напряжения Vg1-Vgn затвора прикладываются из возбуждающей схемы 221 к возбуждающим линиям 104 через контактные выводы 105 возбуждающего напряжения. Обнаруживающий пиксел 121 размещается в пиксельной матрице. Обнаруживающий пиксел 121 включает в себя элемент 102 преобразования и элемент-переключатель 103, описанные выше, а также включает в себя элемент 122 обнаружения, который обнаруживает излучение, и элемент-переключатель 123, соединенный с элементом 122 обнаружения. Элемент 122 обнаружения включает в себя сцинтиллятор, который преобразует излучение в свет, и элемент фотоэлектрического преобразования, который преобразует свет в заряды. Тем не менее, настоящее изобретение не ограничено этим.

[0031] Первый главный электрод элемента-переключателя 123 соединяется с первым электродом элемента 122 обнаружения. Вторые электроды элементов 122 обнаружения, размещаемых вдоль столбца, соединяются с линией 108 смещения, размещаемой для каждого столбца. Линия 110 сигналов обнаружения, размещаемая вдоль столбца, соединяется со вторым главным электродом элемента-переключателя 123. Возбуждающая линия 124, размещаемая для каждой строки, соединяется с управляющим электродом элемента-переключателя 123. Управляющие напряжения Vd1-Vdn затвора, которые управляют элементами-переключателями 123 элементов обнаружения, прикладываются из возбуждающей схемы 221 к возбуждающим линиям 124 через контактные выводы 125 возбуждающего напряжения. Один или множество элементов обнаружения соединяются с каждой линией 110 сигналов обнаружения через элемент-переключатель 123. Когда элемент-переключатель 123 включается, сигнал выводится в линию 110 сигналов обнаружения для каждого элемента обнаружения, соединенного с каждой возбуждающей линией 124. Каждая линия 110 сигналов обнаружения соединяется с первым главным электродом элемента-переключателя 111. Второй главный электрод элемента-переключателя 111 электрически соединяется с внешней схемой 222 считывания через второй входной сигнальный контактный вывод 117. Управляющий контактный вывод элемента-переключателя 111 соединяется с возбуждающей линией 113, размещаемой вдоль строки. Управляющее напряжение Va затвора прикладывается из возбуждающей схемы 221 к возбуждающей линии 113.

[0032] Элемент-переключатель 112 размещается между смежными линиями 110 сигналов обнаружения. Элемент-переключатель 112 может соединять смежные линии 110 сигналов обнаружения. Различные линии 110 сигналов обнаружения соединяются с первым главным электродом и вторым главным электродом одного элемента-переключателя 112. Возбуждающая линия 114 соединяется с управляющим электродом элемента-переключателя 112. Управляющее напряжение Vb затвора прикладывается из возбуждающей схемы 221 к возбуждающей линии 114.

[0033] Первый главный электрод элемента-переключателя 118 соединяется с некоторыми линиями 110 сигналов обнаружения вместе с первым главным электродом элемента-переключателя 111. Второй главный электрод элемента-переключателя 118 электрически соединяется с первым входным сигнальным контактным выводом 120 внешней схемы 222 считывания. Управляющий электрод элемента-переключателя 118 соединяется с возбуждающей линией 126. Управляющее напряжение Vc затвора, которое управляет управляющим электродом, прикладывается из возбуждающей схемы 221 к возбуждающей линии 126 через контактный вывод 119 возбуждающего напряжения. Элементы-переключатели 111, 112 и 118 являются частью узла комбинирования, выполненного с возможностью комбинировать сигналы линий 110 сигналов обнаружения. В этом варианте осуществления, контактные выводы 107 входа сигналов изображения и вторые входные сигнальные контактные выводы 117 схемы 222 считывания представляют собой контактные выводы, которые принимают сигналы для того, чтобы получать изображение, и сигналы для того, чтобы обнаружить излучение из элементов 102 преобразования и элементов 122 обнаружения.

[0034] (c) Обнаружение структуры пикселов

Ниже описываются структуры пикселов устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 5A-5C. Фиг. 5A является видом сверху пиксела 101, а фиг. 5B является видом сверху обнаруживающего пиксела 121. Пиксел 101 включает в себя элемент 102 преобразования, который преобразует излучение или свет в заряды, и элемент-переключатель 103, который формируется из TFT и выводит электрический сигнал, соответствующий зарядам элемента 102 преобразования. Обнаруживающий пиксел 121, который выводит сигнал обнаружения излучения, включает в себя, в качестве узла, выполненного с возможностью выводить сигнал изображения, элемент 102 преобразования, который преобразует излучение или свет в заряды, и элемент-переключатель 103, который формируется из TFT и выводит электрический сигнал, соответствующий зарядам элемента 102 преобразования. Обнаруживающий пиксел 121 также включает в себя элемент 122 обнаружения и элемент-переключатель 123.

[0035] Фиг. 5C является видом в сечении вдоль линии A-A' на фиг. 5B. В этом варианте осуществления, PIN-фотодиод 134 используется в качестве элемента 102 преобразования. Элемент 102 преобразования укладывается на межслойной изоляционной пленке 130 в элементе-переключателе 103, предоставленном на изолирующей несущей подложке 100, которая может представлять собой стеклянную подложку. Обнаруживающий пиксел 121 включает в себя, в качестве узла, выполненного с возможностью выводить сигнал обнаружения, элемент 122 обнаружения, который преобразует излучение или свет в заряды, и элемент-переключатель 123, который формируется из TFT и выводит электрический сигнал, соответствующий зарядам элемента 122 обнаружения. В этом варианте осуществления, PIN-фотодиод 135 используется в качестве элемента 122 обнаружения. Элемент 122 обнаружения укладывается на межслойной изоляционной пленке 130 на элементе-переключателе 123 для элемента обнаружения, предоставленного на изолирующей несущей подложке 100, которая может представлять собой стеклянную подложку.

[0036] Элементы 102 и 122 преобразования изолированы, чтобы не допускать электрического соединения их первых электродов 131 и 132. Изолирующие свойства улучшаются посредством изоляционной пленки 133, размещенной между первыми электродами 131 и 132, чтобы изолировать элементы. Вышеописанные PIN-фотодиоды 134 и 135 укладываются на первых электродах 131 и 132 и изоляционной пленке 133 в порядке "слой с каналом n-типа - слой с каналом i-типа - слой с каналом p-типа". Вторые электроды 136 и 137, защитная пленка 138, вторая межслойная изоляционная пленка 139, линия 108 смещения и защитная пленка 140 последовательно размещаются на PIN-фотодиодах 134 и 135. Выравнивающая пленка и люминофор (не показаны) размещаются на защитной пленке 140. Оба вторых электрода 136 и 137 соединяется с линией 108 смещения через контакты, сформированные в контактных окнах (не показаны на фиг. 5C). ITO (оксид индия и олова), имеющий оптическую прозрачность, используется во вторых электродах 136 и 137, так что свет, преобразованный из излучения посредством люминофора (не показан), может пропускаться через них.

[0037] Фиг. 5A является видом сверху пиксела 101 согласно настоящему изобретению, который не включает в себя элемент 122 обнаружения, выполненный с возможностью выводить сигнал обнаружения, по сравнению с пикселом, показанным на фиг. 5B. Размер элемента 102 преобразования изменяется между пикселом 101 и обнаруживающим пикселом 121. По этой причине, даже если количества излучения, входящего в пикселы, являются идентичными, числа сигналов выходных изображений отличаются. Следовательно, когда захваченное изображение используется для диагностики, коррекция выполняется для того, чтобы корректировать варьирование в сигналах изображений.

[0038] (d) Работа

Далее описывается работа устройства визуализации излучения согласно первому варианту осуществления настоящего изобретения со ссылкой на фиг. 2 и 3. В нижеприведенном пояснении, пусть Va, Vb и Vc представляют собой управляющие напряжения затвора, прикладываемые к возбуждающим линиям 113, 114 и 126, соответственно. Пусть Vg1-Vgn представляют собой управляющие напряжения затвора, прикладываемые к возбуждающим линиям 104, а Vd1-Vdn представляют собой управляющие напряжения затвора, прикладываемые к возбуждающим линиям 124. Дополнительно, на фиг. 3, напряжение, которое изменяет каждый переключатель, соединенный с каждой возбуждающей линией, на включенное состояние, выражается как HI, и напряжение, которое изменяет каждый переключатель на отключенное состояние, выражается как LO.

[0039] Сначала описывается последовательность операций в период T1, показанный на фиг. 3. Период T1 является периодом для того, чтобы обнаружить присутствие/отсутствие облучения излучением. Этот период соответствует, например, периоду после того, как включается питание устройства визуализации излучения, чтобы задавать состояние разрешения съемки, до тех пор, пока рентгенолог не поместит фактически объект в устройстве визуализации излучения и не нажмет переключатель экспозиции излучения, с тем чтобы начинать облучение излучением. В течение этого периода, управляющие напряжения Vd1-Vdn затвора изменяются на HI, и элементы-переключатели 123 устанавливаются во включенное состояние. Помимо этого, управляющее напряжение Va затвора задается равным LO, и управляющие напряжения Vb и Vc затвора задаются равными HI. Элементы-переключатели 111 выключаются, и элементы-переключатели 112, расположенные между линиями 110 сигналов обнаружения, включаются. В это время, элемент-переключатель 118 между линиями 110 сигналов обнаружения и первым входным сигнальным контактным выводом 120 включается. Как результат, множество элементов 122 обнаружения электрически соединяются с первым входным сигнальным контактным выводом 120. Иными словами, сигналы из множества элементов 122 обнаружения электрически комбинируются и вводятся в схему 222 считывания через первый входной сигнальный контактный вывод 120. Сигнал преобразуется в цифровые данные через операционный усилитель 154, схему 155 дискретизации и запоминания, мультиплексор 156 и аналого-цифровой преобразователь 157.

[0040] Сигнал, считываемый посредством схемы 222 считывания, обнаруживается и обрабатывается посредством узла 224 обработки сигналов. Схема 225 управления определяет присутствие/отсутствие облучения излучением на основе сигнала из узла 224 обработки сигналов. После определения того, что облучение излучением существует, начинается период T2, показанный на фиг. 3. В течение периода T1, чтобы удалять темновой ток, сформированный в элементах 102 преобразования, каждый элемент 102 преобразования может периодически сбрасываться до постоянного потенциала. В этом примере, управляющие напряжения Vg1-Vgn затвора возбуждающих линий 104 последовательно изменены на HI, чтобы электрически соединять элементы 102 преобразования с линиями 106 сигналов изображения, фиксированно равными неизменяющемуся постоянному напряжению, за счет этого не допуская накопления темнового тока в элементах 102 преобразования в течение длительного времени. Конкретная длина периода T1 в основном изменяется в зависимости от способа, режима съемки и т.п., но обычно составляет от нескольких секунд до нескольких минут.

[0041] Далее описывается последовательность операций в период T2. Период T2 является периодом облучения излучением. Этот период соответствует, например, периоду после того, как начало облучения излучением обнаруживается, до тех пор, пока накопленная экспозиционная доза излучения не достигнет дозы, подходящей для визуализации. В течение этого периода, управляющие напряжения Vd1-Vdn затвора прерывисто изменяются на HI, и элементы-переключатели 123 прерывисто устанавливаются во включенное состояние. Помимо этого, управляющее напряжение Va затвора задается равным HI, и управляющие напряжения Vb и Vc затвора задаются равными LO, за счет этого выключая элементы-переключатели 112 и 118. Электрическое соединение между линиями 110 сигналов обнаружения подавляется. Элементы 122 обнаружения, соединенные с каждой линией 110 сигналов обнаружения, электрически соединяются с одним из вторых входных сигнальных контактных выводов 117. Сигналы из элементов 122 обнаружения, соединенных с каждой из линий сигналов обнаружения, электрически комбинируются. Тем не менее, в период T2, число элементов 122 обнаружения сигналов, комбинированных и вводимых в каждый второй входной сигнальный контактный вывод 117 меньше, чем в период T1. В этом варианте осуществления, все элементы 122 обнаружения соединяются с первым входным сигнальным контактным выводом 120 в период T1. С другой стороны, в период T2, элементы 122 обнаружения, соединенные с каждой линией 110 сигналов обнаружения, размещаемой вдоль столбца пикселов, соединяются со вторым входным сигнальным контактным выводом 117, соответствующим линии сигналов обнаружения.

[0042] Сигналы из элементов 122 обнаружения вводятся в схему 222 считывания через второй входной сигнальный контактный вывод 117 для каждой линии 110 сигналов обнаружения и преобразуются в цифровые данные через операционный усилитель 150, схему 151 дискретизации и запоминания, мультиплексор 152 и аналого-цифровой преобразователь 153. Подробное описание схемной компоновки и способа обработки после схемы 222 считывания опускается. Сигнал может иметь любую из форм зарядов, напряжения и тока. Множество цифровых сигналов, подвергнутых по отдельности цифровому преобразованию посредством аналого-цифрового преобразователя 153, отправляются в схему 225 управления через узел 224 обработки сигналов. Схема 225 управления обнаруживает экспозиционную дозу излучения на основе множества цифровых сигналов из схемы 222 считывания. В течение периода T2, чтобы накапливать сигналы, сформированные в элементах 102 преобразования посредством излучения, управляющие напряжения Vg1-Vgn затвора возбуждающих линий 104 задаются равными LO, и сигналы, сформированные в пикселах 101, накапливаются в элементах 102 преобразования. Конкретная длина периода T2 в основном изменяется в зависимости от способа, режима съемки и т.п., но нормально составляет от несколько сотен мкс до нескольких сотен мс. Если схема 225 управления или внешний генератор 227 излучения определяет прекращать облучение излучением на основе результата обнаружения экспозиционной дозы излучения посредством схемы 225 управления, последовательность операций переходит или управляется таким образом, чтобы переходить к периоду T3, показанному на фиг. 3.

[0043] В заключение описывается последовательность операций в период T3. Период T3 является периодом считывания сигналов изображений, накопленных в пикселах 101 и обнаруживающих пикселах 121 после окончания облучения излучением. В течение этого периода, управляющие напряжения Vd1-Vdn затвора задаются равными LO, управляющее напряжение Va затвора задается равным HI, и управляющие напряжения Vb и Vc затвора задаются равными LO. Чтобы исключать для линий 110 сигналов обнаружения состояние поддержания уровня заряда, линии 110 сигналов обнаружения соединяются с фиксированным потенциалом через вторые входные сигнальные контактные выводы 117. Помимо этого, чтобы сканировать возбуждающие линии 104, управляющие напряжения Vg1-Vgn затвора последовательно задаются равными HI. За счет этого сканирования, сигналы изображений, накопленные в элементах 102 преобразования пикселов 101 и обнаруживающих пикселов 121, передаются в схему 222 считывания через контактные выводы 107 входа сигналов изображения. Сигналы используются в качестве информации снятых изображений, используемой для диагностики. Подробное описание схемной компоновки и способа обработки после схемы 222 считывания опускается. В этом варианте осуществления, для того чтобы достигать предварительно определенного времени накопления в каждом элементе 102 преобразования, время накопления от последнего сканирования возбуждающих линий 104 в период T1 до сканирования в период T3 задается постоянным. На фиг. 3, Vg1 в завершение задается равным HI в течение периода T1. Следовательно, в период T3, сканирование начинается посредством задания сначала управляющего напряжения Vg2 затвора равным HI. Это позволяет задавать предварительно определенное время накопления после того, как управляющее напряжение Vg затвора в завершение задается равным LO, в период T1, до тех пор, пока управляющее напряжение Vg затвора не будет задано равным HI в период T3.

[0044] В период T1, поскольку требование пространственного разрешения является незначительным или необязательным, сигналы из линий 110 сигналов обнаружения, с которыми соединены множество элементов 122 обнаружения, комбинируются и считываются. Следовательно, можно обнаружить начало облучения излучением с высокой чувствительностью. Дополнительно, в этом варианте осуществления, в течение периода T1, поскольку сигнал может считываться с использованием только операционного усилителя 154 и аналого-цифрового преобразователя 157, соответствующего одному каналу, без работы интегральной схемы 501, потребление мощности может подавляться. В примере, только операционный усилитель 154 и аналого-цифровой преобразователь 157, соответствующие одному каналу, проиллюстрированы для удобства описания. Тем не менее, могут предоставляться множество операционных усилителей и аналого-цифровых преобразователей. Также в этом случае, потребление мощности может подавляться в достаточной степени посредством подавления числа каналов по сравнению с числом линий сигналов обнаружения.

[0045] С другой стороны, в период T2, поскольку сигналы из элементов обнаружения могут считываться для каждого второго входного сигнального контактного вывода 117, с которым соединены сигналы заряда из элементов 122 обнаружения, пространственное разрешение повышается по сравнению с периодом T1. В течение этого периода, поскольку работает интегральная схема 501, включающая в себя множество операционных усилителей 150, схем 151 дискретизации и запоминания и мультиплексоров 152 и аналого-цифрового преобразователя 153, потребление мощности повышается по сравнению с периодом T1. Тем не менее, потребление мощности может подавляться, поскольку период T2 гораздо меньше периода T1 с точки зрения времени.

[0046] В этом варианте осуществления, в течение периода T1, когда требуется чувствительность, сигналы из элементов 122 обнаружения пакетируются. В течение периода T2, когда требуется разрешение, могут обнаружиться выходные сигналы из каждой линии сигналов обнаружения. Следовательно, облучение может точно обнаружиться в течение периода T1. Поскольку число сигналов, которые должны обрабатываться в течение периода T1, может снижаться, можно уменьшать масштаб схемы, используемой для обработки, и уменьшать потребление мощности. В течение периода T2, доза излучения может определяться посредством получения информации экспозиционной дозы излучения с высоким пространственным разрешением. Следовательно, захваченное изображение, имеющее высокую четкость, может получаться с ее использованием.

[0047] Второй вариант осуществления

(a) Компоновка устройства визуализации излучения

Ссылочные позиции, идентичные ссылочным позициям в первом варианте осуществления, обозначают идентичные части в нижеприведенном варианте осуществления, и их описание опускается. Ниже описывается узел датчиков устройства визуализации излучения согласно второму варианту осуществления настоящего изобретения со ссылкой на фиг. 6. Фиг. 6 показывает компоновку пикселов в несущей подложке 100. В отличие от первого варианта осуществления, показанного на фиг. 2, элемент-переключатель 123 не соединяется с элементом 122 обнаружения в обнаруживающем пикселе 121. Соответственно, возбуждающая линия 124, используемая для того, чтобы возбуждать элемент-переключатель 123, не предоставляется. Один или более элементов 122 обнаружения непосредственно соединяются с каждой линией 110 сигналов обнаружения. При обнаружении начала облучения излучением элемент-переключатель 118 включается вместе с элементами-переключателями 112, чтобы извлекать пакеты выходных сигналов элементов 122 обнаружения, размещаемых для каждого столбца. Чтобы извлекать выходные сигналы из элементов 122 обнаружения для каждой линии 110 сигналов обнаружения, элементы-переключатели 112 выключаются. В это время, элемент-переключатель 118 включается и выступает в качестве элемента-переключателя 111. Фиг. 8 является видом сверху обнаруживающего пиксела 121 согласно этому варианту осуществления. Элементы-переключатели не предусмотрены в области элемента 122 обнаружения согласно этому варианту осуществления. Схема 222 считывания использует сигнал из первого входного сигнального контактного вывода 120 для того, чтобы определять начало облучения излучением в течение периода T1, и использует сигналы из вторых входных сигнальных контактных выводов для того, чтобы определять дозу излучения в течение периода T2.

[0048] (b) Работа

Далее описывается работа устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 7. В отличие от первого варианта осуществления, показанного на фиг. 2, поскольку элемент-переключатель 123 для элемента обнаружения не предоставляется, необязательно управлять управляющими напряжениями Vd1-Vdn затвора. В течение периода T1, поскольку управляющее напряжение Vb затвора составляет HI, элементы-переключатели 112 включаются, и смежные линии 110 сигналов обнаружения соединяются для того, чтобы комбинировать выходные сигналы элементов 122 обнаружения. В это время, поскольку управляющее напряжение Vc затвора составляет HI, элемент-переключатель 118 также включается. Комбинированный вывод сигналов из элементов 122 обнаружения, соединенных с каждой линией 110 сигналов обнаружения, выводится в первый входной сигнальный контактный вывод 120 через элемент-переключатель 118. Затем, в течение периода T2, управляющее напряжение Vb затвора изменяется на LO, а управляющее напряжение Vc затвора изменяется на HI. Как результат, элементы-переключатели 112 выключаются, и сигналы из элементов 122 обнаружения передаются в схему 222 считывания через первый входной сигнальный контактный вывод 120 и вторые входные сигнальные контактные выводы 117 и используются для того, чтобы определять экспозиционную дозу излучения. В это время, первый входной сигнальный контактный вывод 120 выводит сигналы элементов обнаружения из линии сигналов обнаружения, аналогично вторым входным сигнальным контактным выводам 117. Согласно этой компоновке, в течение периода T1, сигналы из элементов обнаружения пакетируются, чтобы обнаружить начало облучения излучением, аналогично первому варианту осуществления. Следовательно, можно чувствительно выполнять обнаружение. В течение периода T2, сигналы из линий 110 сигналов обнаружения предоставляются в схему 222 считывания без комбинирования. Следовательно, можно определять дозу излучения на основе области, задавать пространственное решение выше, чем в период T1, и предоставлять захваченное изображение, имеющее высокую четкость. Помимо этого, поскольку может подавляться масштаб схемы, работающей в период T1, может уменьшаться потребление мощности в период T1. Кроме того, когда первый входной сигнальный контактный вывод 120 используется в качестве второго входного сигнального контактного вывода 117, может подавляться число соединительных контактных выводов. Следовательно, можно уменьшать масштаб входной схемы.

[0049] Третий вариант осуществления

(a) Компоновка устройства визуализации излучения

Ниже описывается узел датчиков устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 9. Фиг. 9 показывает пикселы, размещаемые в несущей подложке 100. В отличие от первого варианта осуществления, показанного на фиг. 2, элемент-переключатель 123 для элемента обнаружения не предоставляется в обнаруживающем пикселе 121. Соответственно, возбуждающая линия 124 не предоставляется. Помимо этого, элементы-переключатели 112 и 118 и возбуждающие линии 114 и 126 не предоставляются. Сигнальная линия 127 соединяется с первым входным сигнальным контактным выводом 120. Сигнальная линия 127 соединяется с каждой линией 110 сигналов обнаружения через конденсаторный узел 128. Конденсаторные узлы 128 выступают в качестве узла комбинирования, который комбинирует сигналы линий 110 сигналов обнаружения. Фиг. 11 показывает модификацию этого варианта осуществления, в которой первый электрод элемента 122 обнаружения в каждом обнаруживающем пикселе 121 соединяется с линией 106 сигналов изображения, и линия 106 сигналов изображения выступает в качестве линии 110 сигналов обнаружения. Аналогично, контактный вывод 107 входа сигналов изображения схемы 222 считывания выступает в качестве второго входного сигнального контактного вывода 117. Схема 222 считывания использует сигнал из первого входного сигнального контактного вывода 120 для того, чтобы определять начало облучения излучением в течение периода T1, и использует сигналы из контактных выводов 107 входа сигналов изображения для того, чтобы обнаружить дозу излучения в течение периода T2. В период T3 схема 222 считывания обрабатывает сигнал из каждого контактного вывода 107 входа сигналов изображения в качестве сигнала визуализации.

[0050] (b) Работа

Ниже описывается работа устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 10. В течение периода T1, управляющее напряжение Va затвора задается равным LO, элементы-переключатели 111 между вторыми входными сигнальными контактными выводами 117 и линиями 110 сигналов обнаружения выключаются, и каждая линия 110 сигналов обнаружения переходит в режим поддержания уровня заряда. Следовательно, когда сигнальные заряды формируются в элементе 122 обнаружения, потенциал каждой линии 110 сигналов обнаружения колеблется. Колебание потенциала множества линий 110 сигналов обнаружения передается в сигнальную линию 127, емкостно связанную через конденсаторные узлы 128 между множеством сигнальных линий, в качестве изменения потенциала, вызываемого посредством сигнальных зарядов из множества элементов 122 обнаружения. В период T2 управляющее напряжение Va затвора задается равным HI, чтобы включать элементы-переключатели 111. Схема 222 считывания считывает сигналы из элементов 122 обнаружения через вторые входные сигнальные контактные выводы 117, чтобы определять дозу излучения.

[0051] Согласно этой компоновке, в течение периода T1, сигналы из элементов 122 обнаружения могут считываться в качестве изменения напряжения. Следовательно, перемещение заряда при считывании не возникает. Заряды, используемые для того, чтобы определять присутствие/отсутствие облучения излучением в течение периода T1, также могут использоваться для того, чтобы обнаружить экспозиционную дозу излучения в течение периода T2. Повышается точность обнаружения, и может получаться изображение, имеющее высокую четкость.

[0052] Дополнительно, в форме, показанной на фиг. 11, поскольку сигнал обнаружения и сигнал изображения считываются с использованием идентичного входного сигнального контактного вывода, число входных контактных выводов схемы 222 считывания может снижаться. Это является преимущественным для уменьшения масштаба и потребления мощности схемы 222 считывания.

[0053] Четвертый вариант осуществления

(a) Компоновка устройства визуализации излучения

Ниже описывается устройство визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 12. Фиг. 12 показывает компоновку узла датчиков на несущей подложке 100. В отличие от первого варианта осуществления, показанного на фиг. 2, элемент-переключатель 123 для элемента обнаружения не предоставляется в обнаруживающем пикселе 121. Соответственно, возбуждающая линия 124 не предоставляется. Помимо этого, элементы-переключатели 111, 112 и 118, возбуждающие линии 113, 114 и 126 и первый входной сигнальный контактный вывод 120 не предоставляются. Устройство визуализации излучения согласно этому варианту осуществления выполнено с возможностью обнаруживать облучение излучением посредством отслеживания изменения тока, который протекает из схемы 226 электропитания в линию 108 смещения. Ток смещения отслеживается за счет инструктирования схеме 226 электропитания подвергать аналого-цифровому преобразованию ток смещения и отправлять преобразованные данные в схему 225 управления. В этом случае, схема 226 электропитания также выступает в качестве схемы 222 считывания.

[0054] Если элемент 122 обнаружения, в который прикладывается напряжение через контактный вывод 109 для подачи питания смещения и линию 108 смещения, облучается излучением, сигнальные заряды формируются в элементе 122 обнаружения. Сформированные сигнальные заряды протекают в контактный вывод 109 для подачи питания смещения через линию 108 смещения. Альтернативно, поскольку колебание потенциала возникает в элементе 102 преобразования, а также вследствие формирования зарядов, колебание потенциала передается в линию 108 смещения через паразитную емкость (не показана) и протекает в контактный вывод 109 для подачи питания смещения. Схема 225 управления определяет облучение на основе мониторинга тока смещения посредством схемы 226 электропитания и отправляет управляющий сигнал в возбуждающую схему 221 и схему 222 считывания.

[0055] (b) Работа

Ниже описывается работа устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 13. В этом варианте осуществления, в течение периода T1, ток, протекающий в линию 108 смещения, отслеживается, за счет этого определяя присутствие/отсутствие облучения излучением. В течение периода T1, управляющие напряжения Vg1-Vgn затвора периодически изменяются на HI, чтобы сбрасывать темновой ток. Когда облучение излучением начинается, выходные сигналы элементов 122 обнаружения и элементов 102 преобразования изменяются. Изменение влияет на линию смещения, и ток смещения изменяется. Схема 226 электропитания отслеживает изменение тока смещения. Если возникает изменение, определяется то, что начато облучение. В течение периода T2, выходные сигналы элементов 122 обнаружения вводятся из вторых входных сигнальных контактных выводов 117 в схему 222 считывания, и измеряется экспозиционная доза. Когда предварительно определенная доза излучения обнаруживается, элементы-переключатели 103 управляются таким образом, чтобы начинать считывание сигналов изображений из элементов 102 преобразования в период T3.

[0056] Согласно этой компоновке, в течение периода T1, можно пакетировать сигналы из множества элементов 122 обнаружения и обнаружить излучение с использованием тока, протекающего в линию 108 смещения. В течение периода T2, поскольку может получаться информация экспозиционной дозы излучения с высоким пространственным разрешением, может получаться изображение, имеющее высокую четкость. Помимо этого, поскольку число элементов-переключателей может снижаться, и межсоединение возбуждающих линий может опускаться, преимущественно может уменьшаться потребление мощности.

[0057] Пятый вариант осуществления

(a) Компоновка устройства визуализации излучения

Ниже описывается узел датчиков устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 14. Устройство визуализации излучения согласно этому варианту осуществления включает в себя узел датчиков, включающий в себя множество пикселов 401, размещаемых в матрице на несущей подложке 100. Пиксел 401 выполнен с возможностью выводить электрический сигнал, соответствующий излучению или свету, и включает в себя элемент 402 преобразования, который преобразует излучение или свет в заряды, элемент-переключатель 407 сброса, истоковый повторитель 403, элемент-переключатель 404 нагрузки, внутренний конденсатор 405 и переключатель 406 выбора пикселов. Контактный вывод 109 для подачи питания смещения электрически соединяется со вторым электродом элемента 402 преобразования. Первый электрод элемента 402 преобразования соединяется с управляющим электродом истокового повторителя 403 и первым главным электродом элемента-переключателя 407 сброса. Истоковый повторитель 403 представляет собой усиливающий МОП-транзистор, который выводит сигнал, соответствующий зарядам, из элемента преобразования в линию 106 сигналов изображения.

[0058] Второй главный электрод элемента-переключателя 407 сброса электрически соединяется с контактным выводом 300 для подачи потенциала сброса, и напряжение сброса прикладывается ко второму главному электроду через контактный вывод 300 для подачи потенциала сброса. Управляющий электрод элемента-переключателя 407 сброса электрически соединяется с контактным выводом 305 переключателя сброса пикселов, и потенциал Vres для того, чтобы управлять включением/выключением элемента-переключателя 407 сброса, подается в управляющий электрод через контактный вывод 305 переключателя сброса пикселов. Первый главный электрод истокового повторителя 403 электрически соединяется с контактным выводом 303 для подачи положительного потенциала, и напряжение питания прикладывается к первому главному электроду. Второй главный электрод истокового повторителя 403 соединяется с первым главным электродом элемента-переключателя 404 нагрузки и первым электродом внутреннего конденсатора 405. Узел, с которым соединены второй главный электрод истокового повторителя 403, первый главный электрод элемента-переключателя 404 нагрузки и первый электрод внутреннего конденсатора 405, упоминается в качестве узла A в дальнейшем для удобства описания. Первый главный электрод переключателя 406 выбора пикселов соединяется со вторым электродом внутреннего конденсатора 405. Узел, с которым соединены второй электрод внутреннего конденсатора 405 и первый главный электрод переключателя 406 выбора пикселов, упоминается в качестве узла B в дальнейшем для удобства описания.

[0059] Второй главный электрод переключателя 406 выбора пикселов соединяется с линией 106 сигналов изображения. Управляющий электрод переключателя 406 выбора пикселов электрически соединяется с контактным выводом 304 переключателя выбора пикселов, и потенциал Vsel для того, чтобы управлять включением/выключением переключателя 406 выбора пикселов, подается в управляющий электрод через контактный вывод 304 переключателя выбора пикселов. Второй главный электрод элемента-переключателя 404 нагрузки соединяется с контактным выводом 301 заземления, и потенциал заземления прикладывается к второму главному электроду. Управляющий электрод элемента-переключателя 404 нагрузки соединяется с контактным выводом 306 переключателя нагрузки, и потенциал Vload для того, чтобы управлять включением/выключением переключателя, подается в управляющий электрод через контактный вывод 306 переключателя нагрузки. Линия 106 сигналов изображения соединяется с контактным выводом 107 входа сигналов изображения.

[0060] В компоновке устройства визуализации излучения согласно этому варианту осуществления, возбуждающая схема 221 соединяется с контактным выводом 304 переключателя выбора пикселов, контактным выводом 305 переключателя сброса пикселов и контактным выводом 306 переключателя нагрузки и подает Vres, Vsel и Vload в них, соответственно. Схема 226 электропитания подает потенциал смещения в контактный вывод 109 для подачи питания смещения. Схема 226 электропитания также соединяется с контактным выводом 300 для подачи потенциала сброса, контактным выводом 303 для подачи положительного потенциала и контактным выводом 301 заземления и подает в них потенциалы. Схема 226 электропитания прикладывает потенциал сброса к контактному выводу 300 для подачи потенциала сброса, а также отслеживает величину тока, поданного из источника питания смещения. Схема 225 управления отправляет управляющий сигнал в возбуждающую схему 221 и схему 222 считывания на основе результата мониторинга величины тока посредством схемы 226 электропитания.

[0061] (b) Работа

Ниже описывается работа устройства визуализации излучения согласно этому варианту осуществления со ссылкой на фиг. 15. Пусть Vsel1-Vseln, Vres1-Vresn и Vload1-Vloadn представляют собой напряжения, приложенные к контактным выводам 304 переключателя выбора пикселов, контактным выводам 305 переключателя сброса пикселов и контактным выводам 306 переключателя нагрузки первой-n-ой строк. В пределах объема описания этого варианта осуществления, напряжения Vload1-Vloadn всегда составляют HI. В этом варианте осуществления, сигналы из элементов 402 преобразования используются для того, чтобы получать захваченный сигнал изображения, а также используются для того, чтобы определять присутствие/отсутствие облучения излучением и определять экспозиционную дозу излучения.

[0062] Сначала описывается последовательность операций в период T1, показанный на фиг. 15. Период T1 является периодом для того, чтобы обнаружить присутствие/отсутствие облучения излучением. В течение этого периода, напряжения Vres1-Vresn задаются равными HI, и узел A всегда является фиксированно равным напряжению сброса, поданному из контактного вывода 300 для подачи потенциала сброса. В это время, изменения сигналов из множества элементов 402 преобразования передаются в схему 226 электропитания через контактный вывод 300 для подачи потенциала сброса и контактный вывод 109 для подачи питания смещения. Схема 225 управления определяет присутствие/отсутствие облучения излучением на основе обнаружения изменения тока источника питания смещения посредством схемы 226 электропитания. Если схема 225 управления определяет то, что облучение излучением существует, начинается период T2, показанный на фиг. 15. В течение периода T1, напряжения Vsel1-Vseln задаются равными HI, за счет этого включая переключатели 406 выбора пикселов и подавая фиксированный потенциал из контактных выводов 107 входа сигналов изображения в узлы B.

[0063] Далее описывается последовательность операций в период T2. Период T2 является периодом облучения излучением. Во-первых, напряжения Vsel1-Vseln задаются равными LO, чтобы выключать переключатели 406 выбора пикселов и переводить узлы B в состояние поддержания уровня заряда. Напряжения Vres1-Vresn задаются равными LO, чтобы выключать элементы-переключатели 407 сброса с тем, чтобы задавать пикселы 401 в состояние, допускающее накопление зарядов. Когда формируются заряды, соответствующие экспозиционной дозе излучения, потенциал, соответствующий зарядам, формируется в каждом узле A. Изменение потенциала узла A появляется в узле B через внутренний конденсатор 405, заданный в состояние поддержания уровня заряда.

[0064] Затем, напряжения Vsel1-Vseln последовательно задаются равными HI, и контактные выводы 304 переключателя выбора пикселов последовательно поочередно сканируются на основе строк. Изменение потенциала, которое возникает в узле B каждого пиксела 401, последовательно появляется в схеме 222 считывания через линию 106 сигналов изображения и контактный вывод 107 входа сигналов изображения. С использованием этого сигнала схема 225 управления обнаруживает экспозиционную дозу излучения, которая входит в каждый пиксел 401. На фиг. 15, напряжения задаются равными HI в порядке Vsel1, Vsel2 и Vseln. Тем не менее, порядок может изменяться. Напряжения могут прикладываться таким образом, чтобы поочередно включать только переключатели выбора пикселов для конкретных пикселов. Изменение потенциала вводится во контактный вывод 107 входа сигналов изображения схемы 222 считывания. В течение периода T2, экспозиционная доза определяется на основе потенциала, считываемого посредством схемы 222 считывания, и схема 225 управления управляется таким образом, чтобы прекращать облучение излучением. Альтернативно, схема управления может выводить сигнал во внешний генератор излучения, и внешний генератор излучения может определять то, следует или нет прекращать облучение. Если облучение излучением прекращается, последовательность операций переходит к периоду T3, показанному на фиг. 15, или внешний генератор излучения управляет осуществлением перехода устройства визуализации излучения к периоду T3.

[0065] В завершение описывается последовательность операций в период T3, чтобы считывать сигнал, накопленный в пикселе 401 посредством излучения после окончания облучения излучением. В течение этого периода, во-первых, напряжения Vsel1-Vseln задаются равными HI. Таким образом, каждый узел B задается фиксированно равным потенциалу контактного вывода 107 входа сигналов изображения, и разность потенциалов, соответствующая накопленной экспозиционной дозе излучения до прекращения облучения, появляется между электродами внутреннего конденсатора 405 через истоковый повторитель. Затем, напряжения Vsel1-Vseln задаются равными LO, чтобы переводить узел B в режим поддержания уровня заряда, и в этом состоянии, напряжения Vres1-Vresn задаются равными HI. Узел A внутреннего конденсатора 405 изменяется на потенциал сброса, и узел B заряжается напряжением, соответствующим накопленной экспозиционной дозе излучения. В завершение, напряжения Vsel1-Vseln последовательно задаются равными HI. Заряды, соответствующие накопленной экспозиционной дозе излучения, которое входит в каждый пиксел 401, протекают в схему 222 считывания на основе строк через контактный вывод 107 входа сигналов изображения. Этот сигнал используется в качестве информации снятых изображений для диагностики.

[0066] Согласно этой компоновке, поскольку начало облучения излучением в период T1 определяется посредством пакетирования некоторого числа выходных сигналов из множества пикселов 401, соединенных с контактным выводом 300 для подачи потенциала сброса и контактным выводом 109 для подачи питания смещения, может повышаться чувствительность обнаружения. С другой стороны, в течение периода T2, информация экспозиционной дозы излучения может получаться и обрабатываться на основе элементов преобразования в состоянии, в котором достигается удовлетворительное пространственное разрешение. Следовательно, можно предоставлять захваченное изображение, имеющее высокую четкость.

[0067] Шестой вариант осуществления

Далее описывается пример применения к системе обнаружения излучения с использованием устройства визуализации излучения согласно настоящему изобретению со ссылкой на фиг. 16. Рентгеновские лучи 6060, сформированные посредством рентгеновской трубки 6050, которая представляет собой источник излучения для формирования излучения, проходят через грудь 6062 пациента или больного 6061 и входят в устройство 6040 визуализации согласно настоящему изобретению. Рентгеновские лучи, которые входят, включают в себя информацию относительно внутренней части тела пациента 6061. Если используется способ преобразования рентгеновских лучей в свет посредством сцинтиллятора, свет, соответствующий рентгеновским лучам, которые входят, фотоэлектрически преобразуется посредством элемента фотоэлектрического преобразования, за счет этого получая электрическую информацию. Эта информация преобразуется в цифровые данные и обрабатывается посредством процессора 6070 изображений, служащего в качестве средства обработки сигналов. Данные могут наблюдаться на дисплее 6080, служащем в качестве средства отображения в аппаратной.

[0068] Эта информация также может передаваться в удаленный узел посредством средства обработки передачи, такого как телефонная линия 6090, и отображаться на дисплее 6081, служащем в качестве средства отображения во врачебном кабинете в другом месте, либо сохраняться на носителе записи, таком как оптический диск, так что врач в удаленном узле может поставить диагноз. Информация также может записываться на пленку 6110, служащую в качестве носителя записи, посредством устройства 6100 обработки рентгенограммы, служащего в качестве средства записи.

[0069] Хотя настоящее изобретение описано со ссылкой на примерные варианты осуществления, следует понимать, что изобретение не ограничено раскрытыми примерными вариантами осуществления. Объем прилагаемой формулы изобретения должен соответствовать самой широкой интерпретации, так что он заключает в себе все такие модификации и эквивалентные структуры и функции.

Похожие патенты RU2627929C2

название год авторы номер документа
УСТРОЙСТВО ОБНАРУЖЕНИЯ ИЗЛУЧЕНИЯ, УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ИЗЛУЧЕНИЯ И СИСТЕМА ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ИЗЛУЧЕНИЯ 2006
  • Ватанабе Минору
  • Мотизуки Тиори
  • Номура Кейити
  • Исии Такамаса
RU2351038C2
УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ МЕТОДОМ ИЗЛУЧЕНИЯ, СПОСОБ УПРАВЛЕНИЯ ДЛЯ НЕГО И МАШИНОЧИТАЕМЫЙ НОСИТЕЛЬ, ХРАНЯЩИЙ ПРОГРАММУ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2006
  • Яги Томоюки
  • Эндо Тадао
  • Камесима Тосио
  • Такенака Кацуро
  • Йокояма Кеиго
RU2379712C1
УСТРОЙСТВО ОБНАРУЖЕНИЯ ИЗЛУЧЕНИЯ, УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ИЗЛУЧЕНИЯ И СИСТЕМА ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ИЗЛУЧЕНИЯ 2008
  • Ватанабе Минору
  • Мотизуки Тиори
  • Номура Кейити
  • Исии Такамаса
RU2388112C1
УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ С ПОМОЩЬЮ ИЗЛУЧЕНИЯ И СИСТЕМА ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ С ПОМОЩЬЮ ИЗЛУЧЕНИЯ 2007
  • Такеда Синити
  • Иноуе Масато
RU2427973C2
АППАРАТУРА ДЛЯ РЕГИСТРАЦИИ ИЗЛУЧЕНИЯ И СИСТЕМА ВИЗУАЛИЗАЦИИ С ПОМОЩЬЮ ИЗЛУЧЕНИЯ 2008
  • Мотизуки Тиори
  • Ватанабе Минору
  • Исии Такамаса
RU2427972C1
УСТРОЙСТВО ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ И СИСТЕМА ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ 2015
  • Тасиро Казуаки
  • Каифу Нориюки
  • Такахаси Хидеказу
RU2611209C2
УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ, СИСТЕМА ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ И СПОСОБ ВОЗБУЖДЕНИЯ УСТРОЙСТВА ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ 2012
  • Ивата Коитиро
  • Нода Томоюки
  • Акияма Такеси
  • Морита Кадзумити
  • Сонода Казухиро
  • Ямамото Такуро
RU2496251C2
Устройство формирования изображений, система формирования изображений и подвижный объект 2019
  • Охиа, Такеру
  • Кобаяси, Масахиро
RU2720316C1
СИСТЕМА ВИЗУАЛИЗАЦИИ ИЗЛУЧЕНИЯ, СПОСОБ УПРАВЛЕНИЯ ЕЮ И НОСИТЕЛЬ ИНФОРМАЦИИ, ИМЕЮЩИЙ СОХРАНЕННУЮ НА НЕМ ПРОГРАММУ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА УПРАВЛЕНИЯ 2015
  • Тезука, Симпей
RU2634629C2
СЕНСОРНОЕ УСТРОЙСТВО И СИСТЕМА ВИЗУАЛИЗАЦИИ ДЛЯ ОБНАРУЖЕНИЯ СИГНАЛОВ ИЗЛУЧЕНИЯ 2015
  • Стедмэн Букер Роджер
  • Ливне Амир
RU2647206C1

Иллюстрации к изобретению RU 2 627 929 C2

Реферат патента 2017 года УСТРОЙСТВО ВИЗУАЛИЗАЦИИ ИЗЛУЧЕНИЯ И СИСТЕМА ОБНАРУЖЕНИЯ ИЗЛУЧЕНИЯ

Изобретение относится к устройству визуализации излучения и к системе обнаружения излучения. Устройство визуализации излучения для определения присутствия или отсутствия облучения излучением и определения дозы излучения содержит узел датчиков, включающий в себя пиксельную матрицу, выполненную с возможностью получать сигнал изображения, указывающий обнаруженное излучение, и множество элементов обнаружения, размещенных в пиксельной матрице и выполненных с возможностью обнаруживать излучение; схему, выполненную с возможностью считывать сигнал изображения из узла датчиков, при этом упомянутая схема обрабатывает первый сигнал для определения присутствия или отсутствия облучения излучением и второй сигнал для определения дозы излучения, при этом первый сигнал соответствует комбинации сигналов первого подмножества из множества элементов обнаружения, обеспеченного совместным электрическим соединением с упомянутой схемой, и второй сигнал соответствует комбинации сигналов второго подмножества из множества элементов обнаружения, обеспеченного совместным электрическим соединением с упомянутой схемой, и количество элементов обнаружения, включенных в первое подмножество, больше, чем количество элементов обнаружения, включенных во второе подмножество. Технический результат – повышение пространственного разрешения получаемого изображения. 2 н. и 7 з.п. ф-лы, 16 ил.

Формула изобретения RU 2 627 929 C2

1. Устройство визуализации излучения для определения присутствия или отсутствия облучения излучением и определения дозы излучения, причем упомянутое устройство визуализации излучения содержит:

узел датчиков, включающий в себя пиксельную матрицу, выполненную с возможностью получать сигнал изображения, указывающий обнаруженное излучение, и множество элементов обнаружения, размещенных в пиксельной матрице и выполненных с возможностью обнаруживать излучение; и

схему, выполненную с возможностью считывать сигнал изображения из узла датчиков,

при этом упомянутая схема обрабатывает первый сигнал для определения присутствия или отсутствия облучения излучением и второй сигнал для определения дозы излучения, и

при этом первый сигнал соответствует комбинации сигналов первого подмножества из множества элементов обнаружения, обеспеченного совместным электрическим соединением с упомянутой схемой, и второй сигнал соответствует комбинации сигналов второго подмножества из множества элементов обнаружения, обеспеченного совместным электрическим соединением с упомянутой схемой, и

количество элементов обнаружения, включенных в первое подмножество, больше, чем количество элементов обнаружения, включенных во второе подмножество.

2. Устройство по п. 1, в котором узел датчиков дополнительно включает в себя множество линий сигналов обнаружения, с которыми соединены элементы обнаружения, и узел комбинирования, выполненный с возможностью комбинировать сигналы множества линий сигналов обнаружения посредством совместного электрического соединения с упомянутой схемой, и

при этом множество элементов обнаружения соединены с любой из множества линий сигналов обнаружения.

3. Устройство по п. 2, в котором узел комбинирования включает в себя элементы-переключатели, выполненные с возможностью соединять множество линий сигналов обнаружения с упомянутой схемой.

4. Устройство по п. 2, в котором упомянутая схема включает в себя первую схему обработки сигналов для обработки первого сигнала и вторую схему обработки сигналов для обработки второго сигнала, и

узел комбинирования включает в себя элемент, выполненный с возможностью емкостно связывать множество линий сигналов обнаружения с первой схемой обработки сигналов.

5. Устройство по п. 1, в котором упомянутая схема включает в себя схему электропитания для приложения напряжения смещения к множеству элементов обнаружения по линии смещения, и

схема электропитания отслеживает ток, протекающий в линии смещения, и присутствие или отсутствие облучения излучением определяется на основе изменения тока, протекающего в линии смещения, отслеживаемого схемой электропитания.

6. Устройство по п. 2, в котором элемент обнаружения содержит элемент преобразования, выполненный с возможностью формировать заряды, соответствующие излучению, усиливающий МОП-транзистор, выполненный с возможностью выводить сигнал, соответствующий зарядам, из элемента преобразования в линию сигналов обнаружения, и переключатель сброса, выполненный с возможностью сбрасывать элемент преобразования.

7. Устройство по п. 6, в котором элемент обнаружения выполнен с возможностью выводить сигнал изображения, соответствующий излучению, в линию сигналов обнаружения.

8. Устройство по п. 1, в котором упомянутая схема дополнительно содержит:

первую схему обработки сигналов, выполненную с возможностью обрабатывать первый сигнал; и

вторую схему обработки сигналов, выполненную с возможностью обрабатывать второй сигнал, при этом

в течение определения присутствия или отсутствия облучения излучением работает первая схема обработки сигналов, а работа второй схемы обработки сигналов прекращается, и

в течение определения дозы излучения работает вторая схема обработки сигналов.

9. Система обнаружения излучения, содержащая:

источник излучения, выполненный с возможностью формировать излучение; и

устройство визуализации излучения по любому из пп. 1-8.

Документы, цитированные в отчете о поиске Патент 2017 года RU2627929C2

US 2012001079 A1, 05.01.2012
US 2013136234 A1, 30.05.2013
WO 2012082276 A2, 21.06.2012
УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ МЕТОДОМ ИЗЛУЧЕНИЯ, СПОСОБ УПРАВЛЕНИЯ ДЛЯ НЕГО И МАШИНОЧИТАЕМЫЙ НОСИТЕЛЬ, ХРАНЯЩИЙ ПРОГРАММУ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2006
  • Яги Томоюки
  • Эндо Тадао
  • Камесима Тосио
  • Такенака Кацуро
  • Йокояма Кеиго
RU2379712C1

RU 2 627 929 C2

Авторы

Йокояма Кеиго

Ватанабе Минору

Офудзи Масато

Каванабе Дзун

Фудзиеси Кентаро

Ваяма Хироси

Даты

2017-08-14Публикация

2015-08-05Подача