КОМПЛЕКС ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СБРОСОВ И СТОЧНЫХ ВОД Российский патент 2017 года по МПК C02F9/12 C02F11/12 C02F1/48 B01D29/09 B01D29/96 

Описание патента на изобретение RU2628376C1

Изобретение относится к различным отраслям промышленности и может быть использовано для очистки воды от взвешенных тонкослойных частиц, нефтепродуктов, металлов и др. примесей.

Известен способ осветления технологической воды в подземных водосборниках с механизированной очисткой [1]. Способ осуществляют в три этапа в равномерно движущемся потоке воды по длине пути осаждения частиц. На первом этапе в зоне пульпоприема производят выделение плавающих посторонних предметов для исключения их попадания в транспортные механизмы. На следующем этапе интенсифицируют процесс естественного осаждения твердых взвешенных частиц различной крупности и удельного веса. На последнем этапе аккумулируют осветленную воду перед выдачей ее на поверхность или для повторного использования шлама в подземных водосборниках, ускорения осветления воды для повторного использования, снижения энергозатрат при выдаче подземных вод на поверхность и снижения трудоемкости работ по очистке подземных водосборников.

Недостатком способа является ограниченность применения.

Известен комплексный способ безреагентной очистки сточных вод и брикетирования ила [3], который осуществляется в две стадии. На первой стадии выполняют следующие операции: распределенный сброс воды в приемную секцию отстойника, в которой разделяют взвешенные частицы и несмешиваемые жидкости по плотности выше и ниже плотности воды, аккумулируют и удерживают взвешенные частицы и несмешиваемые жидкости с плотностью выше плотности воды на дно отстойника; интенсивно осаждают взвешенные частицы и несмешиваемые жидкости с плотностью выше плотности воды на дно отстойника в последующих секциях; ведут физико-электрическую обработку для интенсификации осаждения загрязнения на последовательно установленных осветлителях, расположенных по длине отстойника с механизированной выгрузкой осевшего ила скребковым обезвоживающим конвейером в смеситель, куда добавляют связующее, наполнитель и нейтрализатор, перемешивают и подвергают прессованию, а полученные брикеты обеззараживают в печах СВЧ. На второй стадии, реализующейся последовательно рядом технических устройств, ведут дополнительную физико-электрическую обработку воды, осаждение взвешенных частиц, аэрацию и озонирование воды, сбор осевшего в устройствах ила, который отправляют на обезвоживающую часть скребкового конвейера.

Недостатками комплексного способа являются большие капитальные и эксплуатационные затраты, сложность конструкции и большие габариты оборудования.

Известно устройство очистки промышленных сбросов и сточных вод [3], принятое за прототип, включающее обезвоживающий скребковый конвейер, обеспечивающий транспортировку шлама в противоположную сторону от стока воды, поперечные перегородки, устройства для очистки технологической воды двух типов, осаждение, аккумуляцию и выгрузку шлама, отличающееся тем, что дополнительно включает устройства для обработки воды пульсирующим постоянным электрическим током и устройство для регулирования глубины забора и сброса воды, причем устройства очистки воды установлены в траншее, выполненной с уклоном, обеспечивающим течение воды в ней со скоростью 0,35+0,10 м/с, на дне которой располагают обезвоживающий скребковый конвейер, один конец которого производит выгрузку обезвоженного шлама в фильтрующий бункер, а устройства очистки воды располагают попарно: устройство для очистки технологической воды от взвешенных частиц типа жалюзи - модуль электрической обработки воды и продольное устройство очистки технологической воды для осаждения тонкодисперсных частиц - модуль электрической обработки воды в количестве 6-12 пар, при этом в устройствах электрической обработки воды отклонение величины напряжения между электродами к расстоянию между ними установлено на уровне 2,5+0,5 В/см, полярность на электродах соседних пар противоположна, а на поперечный электропроводящий фильтр из металлической стружки и/или металлических шариков подают положительный потенциал 10-12 В, отрицательный подают на корпус скребкового конвейера, при этом на скребках цепи конвейера установлены контейнеры для аккумуляции шлама и/или ила, а фильтрат из фильтрующего бункера возвращают в приемную секцию.

Недостатком устройства являются большие капитальные и эксплуатационные затраты, а также габариты оборудования.

Задачей изобретения является снижение эксплуатационных и капитальных затрат и габаритов комплекса.

Решение поставленной задачи достигается тем, что корпус имеет емкость треугольного или трапециевидного сечения, с углом наклона бортов 43-48°, переходящих в вертикальные, состыкованной с горизонтальным и наклонным корпусами транспортного и транспортно- обезвоживающего устройств, а внутри корпуса попарно устанавливаются модульные устройства одного типа, которые разделяются между собой поперечными перегородками, при этом приемная секция разделяется с модульными устройствами типа «жалюзи» перегородкой сверху на 2/3 высоты модуля, обеспечивая перепуск воды снизу, модульные устройства тонкослойных осветлителей и устройства электрической обработки воды разделяются поперечными перегородками, снизу на 2/3 высоты модулей, обеспечивая перепуск воды переливом, а устройство сброса воды разделяется с устройствами электрической обработки поперечной перегородкой сверху, обезвоживающее транспортное устройство состоит из транспортного горизонтального и транспортно-обезвоживающего устройств, корпусы которых являются трубами, имеющими щели в емкости для перепуска шлама и состыкованными между собой под углом 8-13°, с помещенными внутри шнеками, ребра которых обрезинены, вращаются в одну сторону от разных приводов, при этом щель обезвоживающего транспортного устройства вырезается в трубах от перегородки отделяющей устройства электрической обработки воды до точки уровня заполнения емкости водой на наклонной трубе, которая на верхнем конце снизу имеет шпальтовое сито и поддон с отводящей трубой, для сброса подрешетного продукта в емкость комплекса, а щель под устройствами очистки перекрывается решеткой, выполненной из пластин, установленных под углом 45°, устройство подачи воды имеет плоский раструб, конец которого погружен в воду или касается ее, установленный у перегородки приемной секции и направленный в противоположную сторону, устройство сброса для воды имеет расчетный диаметр трубы, обеспечивающий постоянство уровня воды и скорость потока в комплексе не более 0,1 м/с при максимальном расходе воды.

Работа комплекса поясняется чертежами, где на фиг. 1 показан общий вид комплекса в разрезе и сечение А-А.

На фиг. 1 приняты следующие условные обозначения: 1 - емкость для пропуска воды, 2 - модульное устройство тонкослойной очистки воды от взвешенных частиц типа «жалюзи», 3 - модульное продольное устройство тонкослойной очистки воды от взвешенных частиц, 4 - модульное устройство электрической обработки воды, 5 - обезвоживающее транспортное устройство, 6 - поперечные перегородки, 7 - корпус горизонтального транспортного устройства, 8 - корпус наклонного транспортно-обезвоживающего устройства, 9 - приемная секция, 10 - устройство сброса воды, 11 - шнек, 12, 13 - приводы, 14 - щель, 15 - шпальтовое сито, 16 - поддон, 17 - отводящая труба, 18 - решетка, 19 - устройство подачи пульпы, 20 - плоский раструб.

Пульпа сбрасывается в емкость 1 треугольного или трапециевидного сечения, с углом наклона бортов 43-48°, которые выше угла естественного уклона в воде и переходят в вертикальные, состыкованную с горизонтальным 7 и наклонным 8 корпусами транспортного и транспортно обезвоживающего устройств, а внутри емкости 1 попарно устанавливаются модульные устройства одного типа 2, 3, 4, которые разделяются между собой поперечными перегородками 6, при этом приемная секция 9 разделяется с модульными устройствами типа «жалюзи» перегородкой 6 сверху на 2/3 высоты модуля, обеспечивая перепуск воды снизу, модульные устройства тонкослойных осветлителей 3 и устройства электрической обработки воды 4 разделяются поперечными перегородками 6, снизу на 2/3 высоты модулей, обеспечивая перепуск воды переливом, а устройство сброса воды 10 разделяется с устройствами электрической обработки 4 поперечной перегородкой 6 сверху, обезвоживающее транспортное устройство 5 состоит из транспортного горизонтального 7 и транспортно-обезвоживающего 8 устройств, корпусы которых являются трубами, имеющими щели в емкости 1 для перепуска шлама и состыкованными между собой под углом 8-13° и помещенными внутри шнеками 11, ребра которых обрезинены, вращаются в одну сторону от разных приводов 12, 13, при этом щель 14 обезвоживающего транспортного устройства 5 вырезается в трубах внутри емкости от перегородки, отделяющей устройства электрической обработки воды до точки уровня заполнения емкости водой на наклонной трубе, которая на верхнем конце снизу имеет шпальтовое сито 15 и поддон 16 с отводящей трубой 17, для сброса подрешетного продукта в емкость 1 комплекса, а щель 14 под устройствами очистки перекрывается решеткой 18, выполненной из пластин, установленных под углом 45°, что предотвращает возврат взвешенных частиц в емкость 1, устройство подачи воды 19 имеет плоский раструб 20, конец которого погружен в воду или касается ее, установленный у перегородки приемной секции и направленный в противоположную сторону, устройство для сброса воды 10 имеет расчетный диаметр трубы, обеспечивающий постоянство уровня воды и скорость потока в комплексе не более 0,1 м/с при максимальном расходе воды.

Технический результат - снижение эксплуатационных и капитальных затрат и габаритов комплекса, достигается тем, что стоимость изготовления шнеков (400-600 тыс. рублей, в зависимости от диаметра трубы) ниже стоимости обезвоживающего конвейера (1,2-1,5 млн рублей, в зависимости от его ширины), традиционно используемого для обезвоживания сыпучих материалов, при этом ширина шнека (300-500 мм) меньше ширины конвейера (800-1000 мм), а простота конструкции и высокая надежность работы шнеков снижает эксплуатационные затраты.

Список использованной литературы

1. Патент РФ №2162004. Способ осветления технологической воды в подземных водосборниках с механизированной очисткой. МПК C02F 1/46; CQ2F 9/06. Патентообл. и авторы: Сенкус В.В., Фомичев С.Г., Сенкус В.В., Фомичев К.С. Заявл. 06.11.1998. Опубл. 28.01.2001. Бюл. №2.

2. Патент РФ №2431610. Комплексный способ безреагентной очистки сточных вод и брикетирования ила. МПК C02F 9/12; C02F 11/00. Патентообл. и авторы: Сенкус В.В., Стефанюк Б.М., Сенкус Вас.В., Сенкус Вал.В., Часовников С.Н. и др. Заявл. 08.06.2009.Опубл. 20.122010. Бюл. №35.

3. Патент РФ №2424984. Устройство очистки промышленных сбросов и сточных вод. МПК C02F 1/46; C02F 9/06 (2006.01). Заявит. и авторы: Сенкус Вас.В., Гридасов И.С. Конакова Н.И., Сенкус В.В., Стефанюк Б.М., Сенкус Вал.В., Часовников С.Н. Заявл. 06.07.2009. Опубл. 27.07.2011. Бюл. №21.

Похожие патенты RU2628376C1

название год авторы номер документа
КОМПЛЕКСНЫЙ СПОСОБ БЕЗРЕАГЕНТНОЙ ОЧИСТКИ СТОЧНЫХ ВОД И БРИКЕТИРОВАНИЯ ИЛА 2009
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Сенкус Василий Витаутасович
  • Сенкус Валентин Витаутасович
  • Часовников Сергей Николаевич
  • Гридасов Игорь Сергеевич
  • Богатырев Алексей Александрович
  • Конакова Нина Ивановна
  • Кисель Александр Федорович
RU2431610C2
УСТРОЙСТВО ОЧИСТКИ ПРОМЫШЛЕННЫХ СБРОСОВ И СТОЧНЫХ ВОД 2009
  • Сенкус Василий Витаутасович
  • Гридасов Игорь Сергеевич
  • Конакова Нина Ивановна
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Сенкус Валентин Витаутасович
  • Часовников Сергей Николаевич
RU2424984C2
МОДУЛЬНОЕ УСТРОЙСТВО ТОНКОСЛОЙНОЙ ОЧИСТКИ ВОДЫ ОТ ВЗВЕШЕННЫХ ЧАСТИЦ ТИПА "ЖАЛЮЗИ" 2016
  • Ермаков Анатолий Юрьевич
  • Сенкус Витаутас Валентинович
  • Сенкус Валентин Витаутасович
  • Кудрявцева Елена Михайловна
  • Ермаков Егор Анатольевич
  • Габрашитова Ольга Васильевна
  • Сенкус Василий Витаутасович
  • Шестакова Наталья Георгиевна
  • Шумский Андрей Владимирович
  • Коваленко Валентина Витальевна
RU2621793C1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЭМУЛЬСИИ И МАСЕЛ ОТ ВЗВЕШЕННЫХ ЧАСТИЦ 2010
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Конаков Виктор Яковлевич
  • Сенкус Василий Витаутасович
  • Часовников Сергей Николаевич
  • Сенкус Валентин Витаутасович
  • Конакова Нина Ивановна
  • Лукин Константин Дмитриевич
  • Сенкус Людмила Васильевна
  • Лукин Михаил Константинович
RU2462289C2
СПОСОБ ОЧИСТКИ МАЛЫХ РЕК И СИСТЕМА ЕГО РЕАЛИЗАЦИИ 2009
  • Сенкус Витаутас Валентинович
  • Гридасов Игорь Сергеевич
  • Сенкус Василий Витаутасович
  • Володина Людмила Всеволодовна
  • Конакова Нина Ивановна
  • Стефанюк Богдан Михайлович
  • Сенкус Валентин Витаутасович
  • Часовников Сергей Николаевич
RU2401359C1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ СБРОСОВ ОТ ВЗВЕШЕННЫХ ЧАСТИЦ 2008
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Богатырев Алексей Александрович
  • Сенкус Василий Витаутасович
  • Стефанюк Ярослав Богданович
  • Сенкус Валентин Витаутасович
  • Конакова Нина Ивановна
  • Рагулин Артем Григорьевич
  • Голохвастов Сергей Валерьевич
  • Часовников Сергей Николаевич
RU2385175C1
СПОСОБ ОСВЕТЛЕНИЯ ТЕХНОЛОГИЧЕСКОЙ ВОДЫ В ПОДЗЕМНЫХ ВОДОСБОРНИКАХ С МЕХАНИЗИРОВАННОЙ ОЧИСТКОЙ 1998
  • Сенкус В.В.
  • Фомичев С.Г.
  • Сенкус В.В.
  • Фомичев К.С.
RU2162004C2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОЙ ВОДЫ ОТ ВЗВЕШЕННЫХ ЧАСТИЦ 2006
  • Сенкус Василий Витаутасович
  • Фомичев Сергей Григорьевич
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Сенкус Валентин Витаутасович
RU2329851C2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СБРОСОВ 2003
RU2257251C2
ГИДРОУЧАСТОК ДЛЯ РАЗРАБОТКИ УГОЛЬНЫХ ПЛАСТОВ С ПОДЗЕМНЫМ ЗАМКНУТЫМ ЦИКЛОМ ВОДОСНАБЖЕНИЯ 2012
  • Сенкус Валентин Витаутасович
  • Мельник Владимир Васильевич
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Сенкус Василий Витаутасович
  • Кузнецов Юрий Николаевич
  • Абрамкин Николай Иванович
  • Дъячкова Тамара Васильевна
RU2521207C2

Иллюстрации к изобретению RU 2 628 376 C1

Реферат патента 2017 года КОМПЛЕКС ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СБРОСОВ И СТОЧНЫХ ВОД

Изобретение может быть использовано для очистки подземных водосборников и промышленных сбросов от взвешенных тонкослойных частиц, нефтепродуктов, металлов. Комплекс включает корпус с емкостью (1), транспортно-обезвоживающее устройство (5), модульные устройства для очистки воды трех типов (2, 3, 4), устройства подачи (19) и сброса воды (10). Емкость (1) треугольного или трапециевидного сечения имеет угол наклона бортов 43-48° и состыкована с корпусами транспортно-обезвоживающих устройств – горизонтального (7) и наклонного (8). Внутри корпуса попарно устанавливаются модульные устройства для очистки воды (2, 3, 4) одного типа, разделенные между собой поперечными перегородками (6). Приемная секция (9) разделена с модульными устройствами типа «жалюзи» (2) перегородкой (6) сверху на 2/3 высоты модуля. Модульные устройства тонкослойных осветлителей (3) и модульные устройства электрической обработки воды (4) разделены поперечными перегородками (6) снизу на 2/3 высоты модулей. Устройство сброса воды (10) разделено с модульными устройствами электрической обработки (4) поперечной перегородкой (6) сверху. Транспортные устройства (7) и (8) являются трубами, имеющими щели в емкости (1) для перепуска шлама и состыкованными между собой под углом 8-13° с помещенными внутри шнеками (11). Щель (14) транспортно-обезвоживающего устройства (5) вырезают в трубах от перегородки, отделяющей модульное устройство электрической обработки воды (4) до точки уровня заполнения емкости водой на наклонной трубе, которая на верхнем конце снизу имеет шпальтовое сито (15) и поддон (16) с отводящей трубой (17) для сброса подрешетного продукта в емкость (1). Щель (14) перекрывается решеткой (18), выполненной из пластин, установленных под углом 45°. Устройство подачи воды имеет плоский раструб (20), устройство сброса воды (10) имеет диаметр трубы, обеспечивающий скорость потока в комплексе не более 0,1 м/с. Комплекс обеспечивает надежность, упрощение конструкции и снижение габаритов оборудования. 1 ил.

Формула изобретения RU 2 628 376 C1

Комплекс для очистки промышленных сбросов и сточных вод, включающий корпус, обезвоживающее транспортное устройство, поперечные перегородки, модульные устройства для очистки технологической воды трех типов, устройство подачи воды и устройство сброса воды, отличающийся тем, что корпус имеет емкость треугольного или трапециевидного сечения с углом наклона бортов 43-48°, переходящих в вертикальные, состыкованную с горизонтальным и наклонным корпусами транспортного и транспортно-обезвоживающего устройств, а внутри корпуса попарно устанавливаются модульные устройства одного типа, которые разделяются между собой поперечными перегородками, при этом приемная секция разделяется с модульными устройствами типа «жалюзи» перегородкой сверху на 2/3 высоты модуля, обеспечивая перепуск воды снизу, модульные устройства тонкослойных осветлителей и устройства электрической обработки воды разделяются поперечными перегородками снизу на 2/3 высоты модулей, обеспечивая перепуск воды переливом, а устройство сброса воды разделяется с устройствами электрической обработки поперечной перегородкой сверху, обезвоживающее транспортное устройство состоит из транспортного горизонтального и транспортно-обезвоживающего устройств, корпусы которых являются трубами, имеющими щели для перепуска шлама и состыкованными между собой под углом 8-13°, с помещенными внутри шнеками, ребра которых обрезинены, вращаются в одну сторону от разных приводов, при этом щель обезвоживающего транспортного устройства вырезается в трубах от перегородки, отделяющей устройства электрической обработки воды, до точки уровня заполнения емкости водой на наклонной трубе, которая на верхнем конце снизу имеет шпальтовое сито и поддон с отводящей трубой для сброса подрешетного продукта в емкость комплекса, а щель под устройствами очистки перекрывается решеткой, выполненной из пластин, установленных под углом 45°, устройство подачи воды имеет плоский раструб, конец которого погружен в воду или касается ее, установленный у перегородки приемной секции и направленный в противоположную от нее сторону, устройство сброса для воды имеет расчетный диаметр трубы, обеспечивающий постоянство уровня воды и скорость потока в комплексе не более 0,1 м/с при максимальном расходе воды.

Документы, цитированные в отчете о поиске Патент 2017 года RU2628376C1

УСТРОЙСТВО ОЧИСТКИ ПРОМЫШЛЕННЫХ СБРОСОВ И СТОЧНЫХ ВОД 2009
  • Сенкус Василий Витаутасович
  • Гридасов Игорь Сергеевич
  • Конакова Нина Ивановна
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Сенкус Валентин Витаутасович
  • Часовников Сергей Николаевич
RU2424984C2
КОМПЛЕКСНЫЙ СПОСОБ БЕЗРЕАГЕНТНОЙ ОЧИСТКИ СТОЧНЫХ ВОД И БРИКЕТИРОВАНИЯ ИЛА 2009
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Сенкус Василий Витаутасович
  • Сенкус Валентин Витаутасович
  • Часовников Сергей Николаевич
  • Гридасов Игорь Сергеевич
  • Богатырев Алексей Александрович
  • Конакова Нина Ивановна
  • Кисель Александр Федорович
RU2431610C2
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Бобылев Андрей Олегович
  • Кузнецов Максим Александрович
RU2277514C2
СПОСОБ СТЕРИЛИЗАЦИИ КОМПОТА ИЗ ЯБЛОК 2011
  • Ахмедов Магомед Эминович
  • Демирова Амият Фейзудиновна
  • Рахманова Мафият Магомедовна
  • Абдулхаликов Заур Абдулвагидович
RU2468686C1
DE 202005006148 U1, 23.06.2005
KR 20010017879 A, 05.03.2001.

RU 2 628 376 C1

Авторы

Ермаков Анатолий Юрьевич

Сенкус Витаутас Валентинович

Сенкус Валентин Витаутасович

Ермакова Елена Викторовна

Кудрявцева Елена Михайловна

Ермаков Егор Анатольевич

Габрашитова Ольга Васильевна

Сенкус Василий Витаутасович

Шумский Андрей Владимирович

Коваленко Валентина Витальевна

Даты

2017-08-16Публикация

2016-05-17Подача