Устройство передачи аналогового электрического сигнала по ВОЛС Российский патент 2017 года по МПК H04B10/2575 

Описание патента на изобретение RU2630200C1

Изобретение относится к системам передачи аналоговых сигналов микро-, наносекундного временного диапазона по волоконно-оптическим линиям связи (ВОЛС) с использованием внешней модуляции излучения и может быть использовано для восстановления формы передаваемого электрического сигнала по оптическому аналогу.

Функция пропускания электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера (далее по тексту модулятор) (зависимость пропускания модулятора от приложенного к электрическому сигнальному входу напряжения) по форме близка к синусоидальной. Поэтому при передаче аналоговых сигналов с использованием таких модуляторов для точного восстановления формы передаваемого сигнала необходимо знать как функцию пропускания (заранее определенную), так и рабочую точку модулятора (пропускание модулятора при отсутствии напряжения на электрическом сигнальном входе). Изменение интенсивности на выходе модулятора при подаче сигнала на электрический сигнальный вход модулятора зависит от положения рабочей точки модулятора. Дрейф рабочей точки (изменение пропускания модулятора с течением времени при отсутствии напряжения на электрическом сигнальном входе модулятора) вызван тепловыми процессами в модуляторе (поглощение лазерного излучения в модуляторе, изменение температуры модулятора и т.д.), поэтому требуется постоянный контроль и стабилизация рабочей точки. В качестве рабочей точки чаще всего выбирают минимум, максимум или середину склона функции пропускания модулятора, так как эти точки наиболее просто поддаются настройке и контролю при помощи специализированных устройств (контроллеров рабочей точки).

Определение рабочей точки и функции пропускания для одного модулятора основано на подаче калибровочного электрического сигнала заранее известной формы на электрический сигнальный вход модулятора непосредственно перед подачей на тот же вход передаваемого (информационного) электрического сигнала, при этом амплитуда калибровочного электрического сигнала должна быть равна или превышать амплитуду передаваемого (информационного) электрического сигнала. По изменению оптического сигнала после модулятора, вызванному воздействием калибровочного электрического сигнала, точно определяются рабочая точка и функция пропускания модулятора, а по полученным значениям рабочей точки и функции пропускания, производится точное восстановление передаваемого (информационного) электрического сигнала. Метод также применим при многоканальной (N>1) (многоранговой) передаче сигнала, при этом определение рабочей точки и функции пропускания модулятора для каждого канала передачи производится аналогичным способом.

Известна система передачи аналогового сигнала по ВОЛС, в которой задание и контроль рабочей точки модулятора осуществляется при помощи специализированного устройства - контроллера рабочей точки и дополнительного источника оптического излучения, описанная в работе Limin Ji «А Novel Electro-Optic Measurement System using Multiple Wavelengths» Submitted in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy, University of Rochester Rochester, New York 2011 (www.ofuturescholar.com//paperpage?docid=574429), где для настройки и стабилизации рабочей точки модулятора используется излучение одного лазерного диода и контроллер рабочей точки, а для передачи информационного сигнала используется излучение лазерного диода с другой длиной волны. Для разделения излучений диодов используются WDM-разветвители. Для восстановления сигнала используется заранее определенная функция пропускания модулятора.

Недостатком этой системы является необходимость использования двух источников оптического излучения (лазерных диодов), WDM-разветвителей и контроллера рабочей точки, что увеличивает стоимость системы передачи.

Известна система передачи аналогового сигнала по ВОЛС, в которой задание и контроль рабочей точки модулятора осуществляется при помощи контроллера рабочей точки без использования дополнительного источника оптического излучения, описанная в работе W.R. Donaldson et al., «А single-shot, multiwavelength electro-optic data-acquisition system for inertial confinement fusion applications (invited)», Rev. Sci. Instrum. 83, 10D726 (2012), где для настройки и стабилизации рабочей точки модулятора и передачи информационного сигнала используется излучение одного и того же лазерного диода. Из непрерывного излучения лазерного диода при помощи акустооптического модулятора вырезаются три прямоугольных импульса, первый используется для настройки рабочей точки модулятора интенсивности, далее напряжение на электродах смещения фиксируется, затем подается второй оптический импульс, на котором производится передача информационного сигнала, затем подается третий оптический импульс, на котором производится проверка положения рабочей точки. Для восстановления сигнала также используется заранее определенная функция пропускания модулятора интенсивности.

Недостатками данной системы являются необходимость внесения изменений в схему контроллера рабочей точки для фиксации напряжения на электродах сдвига модулятора во время передачи информационного сигнала, необходимость формирования трех прямоугольных оптических импульсов для проведения процедур настройки рабочей точки модулятора и передачи информационного сигнала, длительное время подготовки к передаче информационного сигнала, следствием чего являются усложнение процедуры передачи сигнала и увеличение стоимости системы передачи.

Наиболее близким техническим решением к предлагаемому (прототип), является система передачи аналогового сигнала, описанная в работе В.V. Beeman, et al., «Mach-Zehnder Detector System Issues and Enhancements for use on the NIF DANTE X-Ray Diagnostic», LLNL-CONF-657917, SPIE Optics + Photonics 2014 San Diego, CA, United States August 17, 2014 through August 20, 2014, содержащая лазерный диод, акустооптический модулятор, волоконный разветвитель, модуляторы Маха-Цандера, контролер рабочей точки, одномодовый волоконный ответвитель, фотодиод, цифровой осциллограф, где для настройки и контроля положения рабочей точки модулятора используется контроллер рабочей точки, подающий на электроды сдвига модулятора биполярное пилообразное напряжение и по оптическому отклику на выходе модулятора настраивающий положение рабочей точки модулятора и производящий периодический контроль положения рабочей точки.

При использовании контроллеров рабочей точки с использованием вспомогательной частоты (принцип dither) для настройки рабочей точки модулятора требуется продолжительное время. В прототипе для сокращения времени настройки на электроды сдвига модулятора подают пилообразный биполярный сигнал с амплитудой ~18 В для определения минимума и максимума пропускания модулятора (значение минимума и максимума оптической мощности на выходе модулятора). Далее происходит настройка рабочей точки модулятора и ее тонкая корректировка. Подача пилообразного напряжения на электроды сдвига и последующая подстройка рабочей точки модулятора занимают время порядка 3.5 с, после чего производится настройка регулируемого оптического ослабителя, который задает необходимый уровень оптической мощности после модулятора, но уже не влияет на напряжение смещения подаваемого на электроды сдвига. Циклы настройки модулятора повторяются каждые 5 с. По заданному положению рабочей точки и предварительно определенной функции пропускания модулятора производится восстановление информационного электрического сигнала по зарегистрированному оптическому сигналу после модулятора.

Недостатком прототипа является невозможность точного восстановления формы электрического сигнала по зарегистрированному оптическому аналогу, передающемуся по ВОЛС с внешней модуляцией, без проведения процедур настройки и периодического контроля рабочей точки модулятора, а следовательно, без использования специализированных устройств (контроллеров рабочей точки) и без необходимости подачи постоянного оптического излучения на вход модулятора.

Техническим результатом, обеспечиваемым заявляемым изобретением, является возможность точного восстановления формы электрического сигнала по зарегистрированному оптическому аналогу, передающемуся по ВОЛС с внешней модуляцией, без проведения процедур настройки и периодического контроля рабочей точки модулятора, а следовательно, без использования специализированных устройств (контроллеров рабочей точки) и без необходимости подачи постоянного оптического излучения на вход модулятора.

Технический результат достигает тем, что устройство передачи аналогового электрического сигнала по ВОЛС, содержащее N≥1 каналов, каждый канал которой состоит из лазерного модуля, входного одномодового волокна, выходного одномодового волокна, электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера, источника питания для подачи постоянного напряжения на электроды сдвига модулятора, приемника оптического излучения и оцифровщика, оптический выход лазерного модуля соединен через входное одномодовое волокно с оптическим входом модулятора, источник питания для подачи постоянного напряжения на электроды сдвига модулятора соединен с электродами сдвига модулятора, оптический информационный выход модулятора соединен через выходное одномодовое волокно с оптическим входом приемника оптического излучения, аналоговый выход которого соединен с аналоговым входом оцифровщика, в каждом из N каналов устройства передачи электрический сигнальный вход модулятора соединен с выходом высокочастотного сумматора электрических сигналов, источник высокочастотных электрических сигналов соединен с одним из входов высокочастотного сумматора электрических сигналов, генератор электрических импульсов соединен со вторым входом высокочастотного сумматора электрических сигналов.

Таким образом, подача передаваемого (информационного) электрического сигнала от источника высокочастотных электрических сигналов и калибровочного электрического сигнала от генератора электрических импульсов на электрический сигнальный вход модулятора осуществляется через высокочастотный сумматор электрических сигналов.

Таким образом, может быть проведено восстановление электрического информационного сигнала по оптическому аналогу при передаче по ВОЛС с использованием внешней модуляции излучения, заключающееся в том, что происходит предварительное определение передаточной функции и рабочей точки одного модулятора, а именно: предварительно выставляется рабочая точка модулятора путем подачи постоянного напряжения на электроды сдвига модулятора, функция пропускания и рабочая точка точно определяются непосредственно перед подачей на электрический сигнальный вход модулятора информационного электрического сигнала, путем подачи на электрический сигнальный вход модулятора калибровочного электрического сигнала заранее известной (например, пилообразной) формы, амплитуда которого больше или равна предполагаемой амплитуде информационного электрического сигнала, а затем в процессе обработки зарегистрированного оптического сигнала после модулятора по известной форме калибровочного электрического сигнала и по изменению оптического сигнала после модулятора, вызванному калибровочным электрическим сигналом, однозначно определяются функция пропускания и рабочая точка модулятора, после этого, по известному изменению оптического сигнала после модулятора, вызванному приходом информационного электрического сигнала, и полученной ранее функции пропускания модулятора, восстанавливается форма информационного электрического сигнала. Метод также применим при многоканальной (N>1) (многоранговой) передаче сигнала, при этом определение рабочей точки и функции пропускания модулятора для каждого канала передачи производится аналогичным способом.

Поскольку подача на электрический сигнальный вход модулятора калибровочного электрического сигнала, а значит определение рабочей точки и функции пропускания модулятора, происходит непосредственно перед моментом прихода информационного сигнала, это в свою очередь позволяет пренебречь дрейфом рабочей точки модулятора за время между приходом калибровочного и передаваемого (информационного) электрических сигналов, а следовательно, дает возможность отказаться от использования специализированных устройств для постоянного контроля рабочей точки модулятора.

На фиг. 1 приведена схема одного канала устройства передачи аналогового электрического сигнала по ВОЛС, для реализации способа передачи и восстановления электрического сигнала по оптическому аналогу.

На фиг. 2 представлен пример осциллограммы электрического сигнала, поступающего на электрический сигнальный вход модулятора.

На фиг. 3 приведена осциллограмма оптического сигнала на выходе модулятора.

На представленных фиг. 1-3:

1 - лазерный модуль (источник оптического излучения); 2 - электрооптический модулятор интенсивности по схеме интерферометра Маха-Цандера; 3 - приемник оптического излучения (например, фотодиод или хронографический электронно-оптический регистратор (ЭОР)); 4 - источник питания для подачи постоянного напряжения на электроды сдвига модулятора; 5 - электроды сдвига модулятора; 6 - электрический сигнальный вход модулятора; 7 - оцифровщик (например, осциллограф, если в качестве приемника оптического излучения 3 используется фотодиод, или ПЗС регистратор, если в качестве приемника оптического излучения 3 используется хронографический ЭОР); 8 - высокочастотный сумматор электрических сигналов; 9 - генератор электрических импульсов; 10 - источник высокочастотных электрических сигналов (например, детектор импульсного ионизирующего излучения); 11 - калибровочный электрический сигнал; 12 - передаваемый (информационный) электрический сигнал; 13 - изменение оптического сигнала на выходе модулятора, вызванное калибровочным электрическим сигналом; 14 - изменение оптического сигнала на выходе модулятора, вызванное приходом информационного электрического сигнала; 15 - входное одномодовое волокно (например, волокно с сохранением поляризации); 16 - выходное одномодовое волокно.

Устройство содержит: лазерный модуль 1, оптический выход которого соединен через входное одномодовое волокно 15 с оптическим входом электрооптического модулятора 2 интенсивности по схеме интерферометра Маха-Цандера, оптический информационный выход модулятора 2 соединен через выходное одномодовое волокно 16 с оптическим входом приемника 3 оптического излучения, аналоговый выход которого соединен с аналоговым входом оцифровщика 7, источник питания 4 для подачи постоянного напряжения на электроды сдвига модулятора соединен с электродами сдвига 5 модулятора 2, выход высокочастотного сумматора 8 электрических сигналов соединен с электрическим сигнальным входом 6 модулятора 2, к одному из входов высокочастотного сумматора 8 электрических сигналов подсоединен источник 10 высокочастотных электрических сигналов, к другому входу высокочастотного сумматора 8 электрических сигналов подсоединен генератор 9 электрических импульсов.

Устройство работает следующим образом: излучение лазерного модуля 1 подают по входному одномодовому оптическому волокну 15 на оптический вход модулятора 2. Предварительно на модуляторе 2 выставляют рабочую точку путем подачи постоянного напряжения от источника питания 4 на электроды сдвига 5 модулятора 2. Электрический сигнальный вход 6 модулятора 2 соединен с выходом высокочастотного сумматора 8 электрических сигналов, таким образом, подачу передаваемого (информационного) электрического сигнала 12 от источника 10 высокочастотных электрических сигналов на электрический сигнальный вход 6 модулятора 2 осуществляют через высокочастотный сумматор 8 электрических сигналов, на второй вход которого с генератора 9 электрических импульсов предварительно подают калибровочный электрический сигнал 11 заранее известной формы. Промоделированное оптическое излучение лазерного модуля 1 с оптического выхода модулятора 2 по выходному одномодовому волокну 16 передают на вход приемника 3 оптического излучения, сигнал приемника 3 оптического излучения регистрируют оцифровщиком 7. В оптическом излучении после модулятора 2 приемником 3 оптического излучения регистрируют последовательные изменения 13 и 14 оптического сигнала, вызванные калибровочным электрическим сигналом 11 и передаваемым (информационным) электрическим сигналом 12 соответственно.

По заранее известной форме калибровочного электрического сигнала 11 и изменению 13 оптического сигнала на выходе модулятора 2, вызванного подачей на электрический сигнальный вход 6 калибровочного электрического сигнала 11 в диапазоне от 0 до U В (под значением U В понимается амплитуда калибровочного электрического сигнала 11), определяют зависимость оптического сигнала на выходе модулятора 2 от величины напряжения, приложенного к электрическому сигнальному входу 6 для диапазона от 0 до U В, а так же рабочую точку, в которой находится модулятор 2 в данный момент времени. Амплитуда напряжения передаваемого (информационного) электрического сигнала 12 не должна превышать амплитуду калибровочного электрического сигнала 11. Время задержки прихода передаваемого (информационного) электрического сигнала 12 по отношению к калибровочному электрическому сигналу 11 не превышает длительности передаваемого (информационного) электрического сигнала 12, благодаря чему можно считать, что положение рабочей точки модулятора 2 не изменилось, а следовательно, модулятор 2 находится в том же рабочем состоянии. Таким образом, зная изменение 14 оптического сигнала на выходе модулятора 2, вызванное приходом передаваемого (информационного) электрического сигнала 12, а также определив рабочую точку и функцию пропускания модулятора 2 при помощи калибровочного электрического сигнала 11, можно однозначно восстановить форму передаваемого (информационного) электрического сигнала 12.

Таким образом, достигается заявленный технический результат, а именно, возможность точного восстановления формы электрического сигнала по зарегистрированному оптическому аналогу, передающемуся по ВОЛС с внешней модуляцией, без проведения процедур настройки и периодического контроля рабочей точки модулятора, а следовательно, без использования специализированных устройств (контроллеров рабочей точки) и без необходимости подачи постоянного оптического излучения на вход модулятора.

При регистрации на фотоприемник в качестве лазерного модуля 1 может быть использован лазерный диод типа WDM8-C-16A-20-NM фирмы Thorlabs, установленный в шасси PRO800 фирмы Thorlabs, в качестве электрооптического модулятора 2 интенсивности по схеме интерферометра Маха-Цандера может быть использован электрооптический модулятор интенсивности по схеме интерферометра Маха-Цандера LN56S фирмы Thorlabs, в качестве приемника 3 оптического излучения - фотодиод DET01CFC фирмы Thorlabs, в качестве источника 4 питания для подачи постоянного напряжение на электроды сдвига модулятора - может быть использован источник питания АТН-1023 фирмы Aktakom, в качестве оцифровщика 7 может быть использован цифровой осциллограф LeCroy Waverunner 640 Zi, в качестве высокочастотного сумматора 8 электрических сигналов может быть использован высокочастотный сумматор на диодах Шоттки, в качестве генератора 9 электрических импульсов может быть использован генератор Tektronix 3102С, в качестве источника 10 высокочастотных электрических сигналов может быть использован детектор импульсного ионизирующего излучения ССДИ38, в качестве входного одномодового волокна 15 и выходного одномодового волокна 16 могут быть использованы оптические волокна РМ1550-ХР фирмы Thorlabs (входное одномодовое волокно 15 может быть с сохранением поляризации и без сохранения поляризации, выходное одномодовое волокно 16 может быть с сохранением поляризации и без сохранения поляризации).

При регистрации на хронографический ЭОР в качестве лазерного модуля 1 может быть использован лазерный диод типа WDM8 PH852DBR120BF фирмы Photodigm, установленный в контроллер температуры и тока ЕМ595 фирмы Gooch&Housego, в качестве электрооптического модулятора 2 интенсивности по схеме интерферометра Маха-Цандера может быть использован электрооптический модулятор интенсивности по схеме интерферометра Маха-Цандера NIR-MX800 фирмы Photline, в качестве приемника 3 оптического излучения - регистратор хронографический электронно-оптический СФЭР6 производства ФГУП НИИИТ, в качестве источника 4 питания для подачи постоянного напряжение на электроды сдвига модулятора - может быть использован источник питания АТН-1023 фирмы Aktakom, в качестве оцифровщика 7 может быть использован регистратор СПМ20 производства ФГУП НИИИТ, в качестве высокочастотного сумматора 8 электрических сигналов может быть использован высокочастотный сумматор на диодах Шоттки, в качестве генератора 9 электрических импульсов может быть использован генератор Tektronix 3102С, в качестве источника 10 высокочастотных электрических сигналов может быть использован детектор импульсного ионизирующего излучения ССДИ38, в качестве входного одномодового волокна 15 и выходного одномодового волокна 16 могут быть использованы оптические волокна РМ780-НР фирмы Thorlabs (входное одномодовое волокно 15 может быть с сохранением поляризации и без сохранения поляризации, выходное одномодовое волокно 16 может быть с сохранением поляризации и без сохранения поляризации).

Похожие патенты RU2630200C1

название год авторы номер документа
Способ восстановления электрического сигнала по оптическому аналогу при передаче по ВОЛС с использованием внешней модуляции излучения 2016
  • Игнатьев Николай Георгиевич
  • Крапива Павел Сергеевич
  • Коротков Кирилл Евгеньевич
  • Москаленко Илья Николаевич
  • Писков Сергей Сергеевич
RU2620588C1
Устройство регистрации импульсного ионизирующего и импульсного оптического излучения с передачей по ВОЛС 2016
  • Игнатьев Николай Георгиевич
  • Крапива Павел Сергеевич
  • Коротков Кирилл Евгеньевич
  • Москаленко Илья Николаевич
RU2620589C1
Устройство передачи аналогового электрического сигнала по ВОЛС 2019
  • Коротков Кирилл Евгеньевич
  • Игнатьев Николай Георгиевич
  • Москаленко Илья Николаевич
  • Субботина Ирина Алексеевна
  • Эргашев Дамир Эркинович
RU2768764C1
Многоканальное устройство передачи аналогового электрического сигнала по ВОЛС 2019
  • Коротков Кирилл Евгеньевич
  • Игнатьев Николай Георгиевич
  • Москаленко Илья Николаевич
  • Субботина Ирина Алексеевна
  • Эргашев Дамир Эркинович
RU2768847C1
Устройство для передачи аналогового электрического сигнала по ВОЛС 2019
  • Коротков Кирилл Евгеньевич
  • Игнатьев Николай Георгиевич
  • Москаленко Илья Николаевич
  • Субботина Ирина Алексеевна
  • Эргашев Дамир Эркинович
RU2771499C1
Способ определения мощности ядерного взрыва 2018
  • Воробьев Алексей Александрович
  • Средин Виктор Геннадьевич
  • Старцев Александр Игоревич
RU2698075C1
ВОЛОКОННО-ОПТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ И РЕГИСТРАЦИИ ОДИНОЧНЫХ ЭЛЕКТРИЧЕСКИХ ИМПУЛЬСОВ СУБНАНО-ПИКОСЕКУНДНОГО ДИАПАЗОНА 2007
  • Дмитриев Юрий Владимирович
  • Шувалов Виктор Михайлович
RU2348111C1
АВТОДИННЫЙ ФОТОДЕТЕКТОРНЫЙ ПРИЕМОПЕРЕДАТЧИК ДЛЯ СИСТЕМ БЛИЖНЕЙ РАДИОЛОКАЦИИ 2023
  • Носков Владислав Яковлевич
  • Богатырев Евгений Владимирович
  • Галеев Ринат Гайсеевич
  • Игнатков Кирилл Александрович
  • Лучинин Александр Сергеевич
RU2824039C1
ВОЛОКОННО-ОПТИЧЕСКИЙ КВАНТОВЫЙ КОМПЬЮТЕР (ВАРИАНТЫ) 2023
  • Акчурин Гариф Газизович
RU2813708C1
Способ передачи аналогового высокочастотного сигнала по волоконно-оптической линии связи 2021
  • Абакумов Алексей Сергеевич
  • Задорожный Владимир Владимирович
  • Ларин Александр Юрьевич
  • Трекин Алексей Сергеевич
RU2760745C1

Иллюстрации к изобретению RU 2 630 200 C1

Реферат патента 2017 года Устройство передачи аналогового электрического сигнала по ВОЛС

Устройство передачи аналогового электрического сигнала по ВОЛС содержит N≥1 каналов. Каждый канал состоит из лазерного модуля, входного волокна, выходного волокна, электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера, источника питания для модулятора, приемника оптического излучения и оцифровщика. В каждом из N каналов устройства передачи содержит модулятор, высокочастотный сумматор электрических сигналов и источник высокочастотных электрических сигналов. Сумматор соединен с указанным источником и генератором электрических импульсов. Технический результат заключается в обеспечении возможности точного восстановления формы электрического сигнала по зарегистрированному оптическому аналогу, передающемуся по ВОЛС с внешней модуляцией, без проведения процедур настройки и периодического контроля рабочей точки модулятора, а следовательно, без контроллеров рабочей точки и без необходимости подачи постоянного оптического излучения на вход модулятора. 3 ил.

Формула изобретения RU 2 630 200 C1

Устройство передачи аналогового электрического сигнала по ВОЛС, содержащее N≥1 каналов, каждый канал которой состоит из лазерного модуля, входного одномодового волокна, выходного одномодового волокна, электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера, источника питания для подачи постоянного напряжения на электроды сдвига модулятора, приемника оптического излучения и оцифровщика, оптический выход лазерного модуля соединен через входное одномодовое волокно с оптическим входом модулятора, источник питания для подачи постоянного напряжения на электроды сдвига модулятора соединен с электродами сдвига модулятора, оптический информационный выход модулятора соединен через выходное одномодовое волокно с оптическим входом приемника оптического излучения, аналоговый выход которого соединен с аналоговым входом оцифровщика, отличающееся тем, что в каждом из N каналов устройства передачи электрический сигнальный вход модулятора соединен с выходом высокочастотного сумматора электрических сигналов, источник высокочастотных электрических сигналов соединен с одним из входов высокочастотного сумматора электрических сигналов, генератор электрических импульсов соединен со вторым входом высокочастотного сумматора электрических сигналов.

Документы, цитированные в отчете о поиске Патент 2017 года RU2630200C1

СПОСОБ ПЕРЕДАЧИ ИНФОРМАЦИИ И СПОСОБ ВЫДЕЛЕНИЯ СИГНАЛА 2011
  • Майер Александр Александрович
RU2460102C1
US 5543952 A1 06.08.1996
US 5822103 A1 13.10.1998
US 20020167693 A1 14.11.2002.

RU 2 630 200 C1

Авторы

Дмитриев Юрий Владимирович

Игнатьев Николай Георгиевич

Крапива Павел Сергеевич

Коротков Кирилл Евгеньевич

Москаленко Илья Николаевич

Писков Сергей Сергеевич

Даты

2017-09-05Публикация

2016-03-04Подача