ЭЛЕКТРОМАГНИТНЫЙ РЕДУКТОР Российский патент 2017 года по МПК H02K16/02 H02K51/00 

Описание патента на изобретение RU2630482C1

Изобретение относится к общему машиностроению, к электротехнике, к электромагнитным механизмам, а конкретно к бесконтактным электромагнитным редукторам, и может быть использовано в качестве передаточного устройства с регулируемым передаточным отношением в механических системах с большим ресурсом работы в условиях отсутствия смазки.

Известен двухступенчатый редуктор, являющийся мультипликатором (статья Дергачев П.А., Кирюхин В.П., Кулаев Ю.В., Курбатов П.А., Молоканов О.Н. «Анализ двухступенчатого магнитного мультипликатора», ж. «Электротехника», №5, 2012 г. с.39-45), имеющий три вращающихся ротора, внешний статор и внутреннее модулирующее кольцо, наружный ротор и наружные магниты промежуточного ротора образуют первую ступень мультипликатора. Второй (промежуточный) ротор имеет радиально намагниченные магниты на наружной и внутренней сторонах. Статор, наружный ротор и наружные магниты промежуточного ротора образуют первую ступень мультипликатора. Третий (внутренний) ротор жестко связан с выходным валом. Внутренние магниты промежуточного ротора, вторая беличья клетка и внутренний ротор образуют вторую (выходную) ступень мультипликатора. Недостатком этого магнитного редуктора является большое число ступеней. Магнитная система содержит четыре воздушных зазора. Современные высокоэнергетические постоянные магниты из редкоземельных элементов имеют высокую стоимость. Гармоники магнитного поля во втором воздушном зазоре, взаимодействуя с наружными магнитами, создают переменные электромагнитные моменты - источник вибрации и шума. Существенным недостатком мультипликатора является отсутствие возможности регулирования частоты вращения выходного вала в широких пределах.

Наиболее близким к заявляемому устройству является электромагнитный редуктор (патент RU №2529422 H02K 16/00, H02K 51/00), содержащий корпус с установленными в нем статором с многофазной обмоткой, подключенной к источнику напряжения, а также первым и вторым роторами, жестко установленными на входном и выходном валах, соответственно, причем, обмотка статора подключена к источнику напряжения через регулируемый преобразователь частоты и размещена в пазах внутренней поверхности статора с образованием полюсов, при этом первый ротор, расположенный коаксиально со статором и жестко связанный с концом входного вала, выполнен в виде беличьей клетки, стержни которой, вставленные в кольца из немагнитного материала, образуют зубцы этого ротора, а второй ротор, расположенный внутри первого, выполнен в виде зубчатого магнитопровода с числом зубцов z2, равным z2=(z1-p1), где z1 - число зубцов первого ротора; p1 - число пар полюсов обмотки статора; причем статор, зубцы первого ротора и второй ротор выполнены шихтованными из ферромагнитной тонколистовой стали.

Недостатком этого электромагнитного редуктора является малая нагрузочная способность в установившемся и динамическом режимах работы, из-за неактивного ферромагнитного второго ротора при сохранении регулируемого коэффициента редукции. Такое устройство менее надежно.

Заявляемое устройство направлено на решение технической задачи создания несложной и недорогой конструкции электромагнитного редуктора, который может использоваться в качестве мультипликатора, с регулируемым коэффициентом редукции.

Техническим результатом заявляемого устройства является увеличение передаваемой мощности в установившемся и динамическом режимах за счет увеличения активной мощности, поступающей в обмотку статора от преобразователя частоты, при сохранении возможности регулирования коэффициента редукции.

Этот технический результат достигается тем, что электромагнитный редуктор, содержащий корпус с установленными в нем статором с многофазной обмоткой, подключенной к источнику напряжения, а также первым и вторым роторами, жестко установленными на входном и выходном валах, соответственно, обмотка статора подключена к источнику напряжения через регулируемый преобразователь частоты и размещена в пазах внутренней поверхности статора с образованием полюсов, при этом первый ротор, расположенный коаксиально со статором и жестко связанный с концом входного вала, выполнен в виде беличьей клетки, стержни которой, вставленные в кольца из немагнитного материала, образуют зубцы этого ротора, трехфазная зубцовая обмотка статора, состоит из катушек, число которых равно числу зубцов статорного сердечника, а второй ротор, расположенный внутри первого, выполнен с числом 2(z-p1) разнополярных магнитов, жестко установлен на выходном валу, вращающемся в подшипниках щитов корпуса,

где z - число зубцов первого ротора;

р1 - число пар полюсов обмотки статора;

причем второй ротор с неодим-железо-боровыми магнитами, которые наклеены на шихтованный ферромагнитный цилиндр с соотношением внешнего диаметра ротора к толщине магнита, равного 24,4, а статор, зубцы первого ротора выполнены шихтованными из ферромагнитной тонколистовой стали.

На рис. 1 и рис. 2 представлена принципиальная конструктивная схема заявляемого электромагнитного редуктора. На рис. 3 - векторная диаграмма электромагнитного редуктора.

В электромагнитном редукторе полый входной вал 1 установлен с возможностью вращения в щите 9, корпуса 13. Неподвижно установленный в корпусе 13 статор 3 выполнен из шихтованных листов электротехнической холоднокатаной стали с пазами на его внутренней поверхности. Трехфазная зубцовая обмотка статора, состоит из катушек, число которых равно числу зубцов статорного сердечника. В пазах статора 3 расположена многофазная обмотка 4, образующая пары полюсов статора, число которых равно p1. Обмотка 4 подсоединена к регулируемому преобразователю частоты 5. Коаксиально статору 3 установлен жестко связанный с концом входного вала с возможностью вращения вместе с ним в подшипниках первый ротор 2. Ротор 2 выполнен в виде беличьей клетки, стержни которой выполнены из шихтованных тонких ферромагнитных прямоугольных пластин электротехнической стали и имеют форму прямоугольной призмы, причем стержни закреплены в кольцах 11, 12 из немагнитного материала. Эти стержни образуют зубцы ротора 2, число которых равно z. Безобмоточный внутренний, по отношению к ротору 2, второй магнитоэлектрический ротор 8 (внутренний, быстроходный) с числом 2(z-p1) разнополярных магнитов 6 жестко установлен на выходном валу 7, вращающемся в подшипниках щитов корпуса 9 и 10. Причем неодим-железо-боровые магниты 6 наклеены на шихтованный ферромагнитный цилиндр 8 с соотношением внешнего диаметра ротора к толщине магнита, равного 24,4.

Электромагнитный редуктор работает следующим образом. На выводы обмотки 4 статора 3 подают напряжение от регулируемого преобразователя частоты 5. В результате магнитное поле статора будет перемещаться в пространстве с угловой скоростью (знак минус реализуется преобразователем при смене следования фаз). Образующееся при этом магнитное поле статора с числом пар полюсов p1, поступающее на одну сторону ротора 2, на другой его стороне будет иметь основную гармонику с небольшим числом пар полюсов, равным разности (z-p1). Это малополюсное магнитное поле взаимодействует с магнитами 6 внутреннего магнитоэлектрического ротора 8, имеющего число полюсов 2(z-p1) разнополярных магнитов 6, вращается с угловой скоростью Ω2. Скорости вращения роторов 2 и 8 и выходная частота статического преобразователя 5 удовлетворяют базовой зависимости редуктора

Для электромагнитных моментов М1 вала 2 и М2 вала 7 справедливы выражения

где E0, Eδ - соответственно ЭДС холостого хода и результирующая трехфазной обмотки статора; δ1, kδ1, p1, p2, ,kδ2, δ2, D1, D2, θ1, θ2 - размеры и коэффициенты воздушных зазоров, числа пар полюсов, наружные диаметры, углы нагрузки соответственно тихоходного и быстроходного валов; - постоянная составляющая сквозной удельной магнитной проводимости двух воздушных зазоров; xa - индуктивное сопротивление взаимоиндукции обмотки статора.

ЭДС обмотки 4 статора 3, наведенной магнитным потоком воздушного зазора, будет равна:

где

- индуктивное сопротивление взаимоиндукции магнитов 6 ротора 8 с обмоткой статора 4;

- постоянная составляющая сквозной удельной магнитной проводимости двух воздушных зазоров;

- основная гармоника МДС магнитов ротора;

- индуктивное сопротивление взаимоиндукции обмотки статора.

При этом равновесие напряжения обмотки статора выражается равенством

где Z=r+jxσ; r, хσ - соответственно активное и индуктивное сопротивление рассеяния обмотки статора.

А электромагнитная мощность обмотки статора составляет

На рис. 3 показана векторная диаграмма цепи статора электромагнитного редуктора с током угловой частоты ω, которая содержит рассмотренные ЭДС , , и угол нагрузки θ1.

Справедливо равенство, выражающее баланс мощностей

Задание коэффициента редукции редуктора осуществляется регулированием частоты ω преобразователя 5, управляющий вход которого можно подключать к любым задающим устройствам.

У рассматриваемого электромагнитного редуктора, имеющего на зажимах обмотки 4 статора 3 регулируемый статический преобразователь частоты 5, обеспечивается не только управляемое изменение скоростей вращения выходных валов в соответствии с формулой (1), но и автоматическое увеличение их мощности (при росте внешних моментов, прикладываемых к этим валам) в соответствии с формулой (7), за счет увеличения активной мощности, поступающей в обмотку 4 статора 3 от преобразователя частоты 5. Указанный автоматизм дает возможность редуктору не опрокидываться из синхронизма при кратковременных и длительных толчках нагрузки на его валах.

Такой электромагнитный редуктор отличается упрощенной конструкцией за счет выполнения безобмоточных роторов и одного статора с одной многофазной, например трехфазной, обмоткой. При этом заявляемый редуктор обладает высокой нагрузочной способностью за счет второго активного ротора с постоянными магнитами, создающими увеличенный магнитный поток, повышается удельный момент. Редуктор выполнен с плавным изменением частоты вращения выходного вала редуктора по отношению к частоте вращения входного вала (если менять частоту напряжения статора), простой и удобен в эксплуатации. Редуктор может найти применение в различных транспортных системах, в ветроэнергетике в качестве мультипликатора. Ветроколеса в рабочем режиме имеют относительно небольшую скорость вращения. Для снижения массы электрогенераторов, приводимых во вращение ветроколесами через редуктор, необходим заявляемый электромагнитный редуктор (мультипликатор), который позволит использовать сравнительно легкие быстроходные электрогенераторы. Есть возможность создать систему автоматического поддержания выходных параметров электрогенератора за счет плавного регулирования коэффициента редукции в функции входной скорости.

Похожие патенты RU2630482C1

название год авторы номер документа
ЭЛЕКТРОМАГНИТНЫЙ РЕДУКТОР 2013
  • Афанасьев Александр Александрович
  • Чихняев Виктор Александрович
RU2529422C1
ЭЛЕКТРОМАГНИТНЫЙ РЕДУКТОР 2015
  • Афанасьев Александр Александрович
  • Чихняев Виктор Александрович
  • Ефимов Вячеслав Валерьевич
RU2583846C1
ЭЛЕКТРОМАГНИТНЫЙ РЕДУКТОР 2015
  • Афанасьев Александр Александрович
  • Чихняев Виктор Александрович
  • Ефимов Вячеслав Валерьевич
RU2594757C1
РЕДУКТОР ЭЛЕКТРОМАГНИТНЫЙ 2015
  • Афанасьев Александр Александрович
  • Чихняев Виктор Александрович
  • Ефимов Вячеслав Валерьевич
RU2590915C1
ЭЛЕКТРОМАГНИТНЫЙ РЕДУКТОР 2013
  • Афанасьев Александр Александрович
  • Чихняев Виктор Александрович
RU2526540C1
Электромагнитный редуктор 2019
  • Афанасьев Анатолий Юрьевич
  • Афанасьев Александр Александрович
  • Каримов Динар Рафаэлевич
RU2717820C1
МАГНИТОЭЛЕКТРИЧЕСКИЙ ВЕНТИЛЬНЫЙ ДВИГАТЕЛЬ СО ВСТРОЕННЫМ МАГНИТНЫМ РЕДУКТОРОМ (ВАРИАНТЫ) 2018
  • Афанасьев Александр Александрович
  • Токмаков Дмитрий Анатольевич
  • Романов Роман Артемьевич
RU2704239C1
Тихоходный вентильный двигатель индукторного типа со встроенным магнитным редуктором 2021
  • Афанасьев Александр Александрович
  • Генин Валерий Семенович
  • Ваткин Владимир Александрович
  • Кириллов Сергей Владимирович
  • Матюнин Алексей Николаевич
  • Токмаков Дмитрий Анатольевич
  • Томилин Сергей Александрович
RU2787007C1
УСТРОЙСТВО СТАБИЛИЗАЦИИ НАПРЯЖЕНИЯ И ЧАСТОТЫ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2015
  • Чихняев Виктор Александрович
  • Афанасьев Александр Александрович
RU2590929C1
Индукторный ветрогенератор со встроенным магнитным редуктором 2021
  • Афанасьев Александр Александрович
  • Генин Валерий Семенович
  • Ваткин Владимир Александрович
  • Кириллов Сергей Владимирович
  • Матюнин Алексей Николаевич
  • Токмаков Дмитрий Анатольевич
RU2774117C1

Иллюстрации к изобретению RU 2 630 482 C1

Реферат патента 2017 года ЭЛЕКТРОМАГНИТНЫЙ РЕДУКТОР

Изобретение относится к электротехнике, в частности к бесконтактным электромагнитным редукторам. Технический результат - увеличение передаваемой мощности в установившемся и динамическом режимах с сохранением возможности регулирования коэффициента редукции. Электромагнитный редуктор содержит статор с многофазной обмоткой, подключенной к источнику напряжения, первый и второй ротор, установленные на входном и выходном валах соответственно. Обмотка статора подключена к источнику напряжения через регулируемый преобразователь частоты и размещена в пазах внутренней поверхности статора с образованием полюсов. Первый ротор выполнен в виде беличьей клетки, стержни которой образуют зубцы z этого ротора. Трехфазная обмотка статора состоит из катушек, число которых равно числу зубцов статорного сердечника, с числом пар полюсов р1. Второй ротор, расположенный внутри первого, выполнен с числом 2(z-p1) разнополярных магнитов, которые наклеены на шихтованный ферромагнитный цилиндр с соотношением внешнего диаметра ротора к толщине магнита, равного 24,4. 3 ил.

Формула изобретения RU 2 630 482 C1

Электромагнитный редуктор, содержащий корпус с установленными в нем статором с многофазной обмоткой, подключенной к источнику напряжения, а также первым и вторым роторами, жестко установленными на входном и выходном валах, соответственно, обмотка статора подключена к источнику напряжения через регулируемый преобразователь частоты и размещена в пазах внутренней поверхности статора с образованием полюсов, при этом первый ротор, расположенный коаксиально со статором и жестко связанный с концом входного вала, выполнен в виде беличьей клетки, стержни которой, вставленные в кольца из немагнитного материала, образуют зубцы этого ротора, отличающийся тем, что трехфазная зубцовая обмотка статора состоит из катушек, число которых равно числу зубцов статорного сердечника, а второй ротор, расположенный внутри первого, выполнен с числом 2(z-р1) разнополярных магнитов, жестко установлен на выходном валу, вращающемся в подшипниках щитов корпуса,

где z - число зубцов первого ротора;

р1 - число пар полюсов обмотки статора;

причем второй ротор с неодим-железо-боровыми магнитами, которые наклеены на шихтованный ферромагнитный цилиндр с соотношением внешнего диаметра ротора к толщине магнита, равного 24,4, а статор и зубцы первого ротора выполнены шихтованными из ферромагнитной тонколистовой стали.

Документы, цитированные в отчете о поиске Патент 2017 года RU2630482C1

ЭЛЕКТРОМАГНИТНЫЙ РЕДУКТОР 2013
  • Афанасьев Александр Александрович
  • Чихняев Виктор Александрович
RU2529422C1
РЕДУКТОР ЭЛЕКТРОМАГНИТНЫЙ 2015
  • Афанасьев Александр Александрович
  • Чихняев Виктор Александрович
  • Ефимов Вячеслав Валерьевич
RU2590915C1
Кольцевой ускоритель заряженных частиц 1957
  • Векслер В.И.
  • Мороз Е.М.
SU111367A1
CN 103378711 A, 30.10.2013
US 9431884 B2, 30.08.2016
US 6373160 B1, 16.04.2002.

RU 2 630 482 C1

Авторы

Афанасьев Александр Александрович

Чихняев Виктор Александрович

Даты

2017-09-11Публикация

2016-12-29Подача