Система гелиотеплохладоснабжения Российский патент 2017 года по МПК F24F5/00 

Описание патента на изобретение RU2631040C1

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Известна система гелиотеплохладоснабжения содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздуховод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением.

Недостатком технического решения является энергоемкость при изменяющихся погодно-климатических условиях эксплуатации, когда по южному воздуховоду в нагнетательный вентилятор поступают мелкодисперсные загрязнения в виде каплеобразной влаги и твердых частиц, на перемещение которых приводом вентилятора затрачивается дополнительная энергия (см., например, Курчавин А.Г. и др. Экономия тепловой и электрической энергии.-М.:1980 г. – 280 с.,ил.). Кроме того, и твердые частицы загрязнений, например атмосферная и /или технологическая пыль, интенсифицируют износ движущихся частей вентилятора.

Известна система гелиотеплохладоснабжения содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений.

Недостатком являются затраты системы гелиотеплохладоснабжения из-за отсутствия возможности регулирования мощности, потребляемой нагнетательным вентилятором для подачи атмосферного воздуха в помещение с обеспечением заданных параметров микроклимата, особенно во время перехода температуры окружающей среды с отрицательных значений на положительные, и наоборот, когда существенно изменяется плотность воздуха, перемещаемого по подпольному воздухопроводу.

Технической задачей предлагаемого изобретения является оптимизация потребляемой мощности на привод нагнетательного вентилятора системы гелиотеплохладоснабжения при изменяющейся температуре окружающей среды путем автоматизации процесса контроля и взаимодействия между подачей воздуха в помещение, т.е. скоростью вращения привода, соответственно, его энергозатратами и погодно-климатическими условиями эксплуатации.

Технический результат по снижению энергозатрат достигается тем, что система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, при этом подпольный воздухопровод соединен с нагнетательным вентилятором, который снабжен приводом с автоматизированной системой контроля и регулирования подачи атмосферного воздуха в помещении, причем автоматизированная система контроля и регулирования содержит регулятор скорости вращения в виде блока порошковых электромагнитных муфт и регулятор температуры с датчиком температуры атмосферного воздуха, установленный у входного отверстия суживающегося сопла, кроме того, регулятор температуры включает блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода нагнетательного вентилятора.

На фиг. 1 представлена схема системы гелиотеплохладоснабжения, на фиг. 2 - завихритель сужающегося сопла, на фиг. 3 – вентиляционная камера с нагнетательным вентилятором и приводом, снабженным системой автоматизированного контроля и регулирования подачи атмосферного воздуха.

Система содержит воздуховоды: южный 1, подпольный 2, северный 3, теплообменный 4 и грунтовый 5 с грунтовыми теплопроводящими трубами 6, помещение 7, под которым расположен тепловой аккумулятор 8, вихревую трубу 9 с входом 10 для обрабатываемого воздуха, каналом «холодного» потока 11, соединенным с входом 12 фильтра 13 и каналом «горячего» потока 14, соединенным воздухопроводом 5, фильтр 13 своим выходом 15 соединен с внутренним объемом помещений 7 нагнетательный вентилятор 16, установленный в вентиляционной камере 17 и соединенный подпольным воздухопроводом 2 через воздушные заслонки 18 и 19 с входом 10 вихревой трубы 9 и с выходом 12 фильтра 13, вытяжной вентилятор 20, установленный в вентиляционной камере 21 и соединенный теплообменным 4 воздуховодом с северным 3 воздуховодом, осуществляющим выброс воздуха из помещения 7 в атмосферу.

Южный 1 воздуховод снабжен суживающимся соплом 22, которое установлено вне помещения 7 и выполнено с завихрителем 23, состоящим из четырех 24, 25,26 и 27 пластин, входные 28, 29, 30, 31 и выходные 32, 33, 34 и 35 участки которых распложены один относительно другого под прямым углом. У входного отверстия 36 суживающегося сопла 22 на внутренней поверхности 37 выполнена круговая канавка 38, соединенная с устройством удаления загрязнений 39.

В вентиляционной камере 17 подпольный воздуховод 2 соединен с нагнетательным вентилятором 16, который снабжен приводом 40 с автоматизированной системой 41 контроля и регулирований подачи атмосферного воздуха в помещение 7. Автоматизированная система 41 контроля и регулирования содержит регулятор скорости вращения 42 в виде блока порошковых электромагнитных муфт и регулятор температуры 43 с датчиком температуры 44 атмосферного воздуха, установленного у входного отверстия 36 суживающегося сопла 22 южного воздухопровода 1.

Регулятор температуры 43 включает блок сравнения 45 и блок задания 46, причем блок сравнения 45 соединен с входом электронного усилителя 47, оборудованного блоком нелинейной обратной связи 48, а вход электронного усилителя 47 соединен с входом магнитного усилителя 49 с выпрямителем, который на выходе подключен к регулятору скорости 42 в виде блока порошковых электромагнитных муфт привода 40 нагнетательного вентилятора 16.

Система гелиотеплохладоснабжения работает следующем образом: под действием центробежных сил загрязненного атмосферного воздуха частицы загрязнений отбрасываются к внутренней поверхности 37 суживающегося сопла 22 и перемещаются к круговой канавке 38 у входного отверстия 36, откуда поступают в устройство удаления загрязнений 39 для последующего удаления вручную или автоматически.

Подачу атмосферного воздуха в помещение 7 осуществляет нагнетательный вентилятор 16, расположенный в вентиляционной камере 17 посредством перемешивания потока по подпольному воздуховоду 2. Атмосферный воздух поступает во входное отверстие 36 сужающегося сопла 22, расположенного на южном воздухопроводе 1. Датчик температуры 44, установленный у входного отверстия 36 сужающегося сопла 22, регистрирует температуру окружающей среды, определяемую как нормированную (например, 20°C) в зависимости от погодно-климатческих условий эксплуатации системы гелиотеплохладоснабжения, по которой с учетом оптимизации настраивается скорость вращения привода 42 автоматизированной системы 41 контроля и регулирования нагнетательного вентилятора 16 из расчета минимизации энергозатрат на обеспечение заданного микроклимата по поступлению атмосферного воздуха.

При отклонении температуры наружного (атмосферного) воздуха в сторону увеличения от нормированной сигнал, поступающий с датчика температуры 44, становится меньше, чем сигнал блока задания 46, и на выходе блока сравнения 45 регулятора температуры 43 появится сигнал положительной полярности, который поступает на вход электронного усилителя 47 одновременно с сигналом отрицательной нелинейной обратной связи 48. За счет этого в электронном усилителе 47 компенсируется нелинейность характеристики привода 40 нагнетаемого вентилятора 16. Сигнал с выхода электронного усилителя 47 поступает на вход магнитного усилителя 49, где усиливается по мощности, выпрямляется и поступает на редуктор скорости времени 42 в виде блока порошковых электромагнитных муфт. Положительная полярность сигнала электронного усилителя 47 вызывает увеличение тока возбуждения на выходе магнитного усилителя 49.

В результате повышается момент от привода 40 и вентилятор 16 увеличивает подачу воздуха в помещении 7, так как известно, что с увеличением температуры атмосферного воздуха уменьшается его плотность (см., например, стр. 214 Нащокин В.В. Техническая термодинамика и теплопередача.- М.: Высшая школа – 1980-469 с., ил.) и, как следствие, уменьшилась бы массовая подача атмосферного воздуха, поступающего в помещение 7 для поддержания заданного микроклимата.

При отклонении температуры атмосферного воздуха в сторону уменьшения по сравнению с нормированной (+20°C) сигнал, поступающий с датчика температуры 44, становится большим, чем сигнал блока задания 46, и на выходе блока сравнения 45 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 47 одновременно с сигналом отрицательной нелинейной обратной связи 48.

За счет этого в электронном усилителе 47 компенсируется нелинейность характеристики привода 40 нагнетательного вентилятора 16. Сигнал с выхода электронного усилителя 47 поступает на вход магнитного усилителя 49, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 42 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 47 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 49. В результате понижается момент от привода 40 и нагнетательный вентилятор 16 уменьшает подачу атмосферного воздуха с повышенной плотностью, сохраняя тем самым необходимое массовое количество атмосферного воздуха с поддержанием заданного микроклимата в помещении 7. Но при этом сокращаются энергозатраты на привод 40 нагнетательного вентилятора 16, т.е. обеспечивается снижение энергозатрат при эксплуатации системы гелиотеплохладоснабжения в условиях изменяющихся погодно-климатических воздействий.

При наличии каплеобразных частиц атмосферной и технологической влаги, а также твердых частиц пыли в атмосферном воздухе, поступающем по южному 1 воздухопроводу через подпольный воздухопровод 2 в нагнетательный вентилятор 16, его приводом затрачивается дополнительная энергия на транспортировку данной смеси на вход 10 вихревой трубы 9. Кроме того, загрязнения атмосферного воздуха интенсифицируют износ лопастей нагнетательного вентилятора 16 и, как следствие, снижается надежность системы гелиотеплохладоснабжения. Снабжение южного 1 воздухопровода суживающимся соплом 22 с завихрителем 23 приводит к тому, что атмосферный воздух с частицами загрязнений после входного отверстия 36 контактирует с входными участками 28, 29, 30, 31 четырех пластин 24, 25, 26 и 27, которые повернуты на прямой угол относительно входных участков 32, 33, 34 и 35. В результате всасываемый атмосферный воздух в суживающемся сопле разделяется на четыре потока и по мере движения перемещается на 90°, что приводит перед поступлением его в южный 1 воздухопровод во вращательное движение.

Следовательно, в нагнетательный вентилятор 16 поступает очищенный от загрязнения атмосферный воздух и привод его потребляет нормированное количество энергии, вне зависимости от погодно-климатических условий эксплуатации системы гелиотеплохладоснабжения.

В теплое время года при температурах атмосферного воздуха выше значений температуры, предусмотренных параметрами микроклимата внутри помещения 7, например, 25°C (воздушная заслонка 19 закрыта), атмосферный воздух по южному воздухопроводу 1 нагнетается в подпольный воздухопровод 2 вентилятором 16, установленным в вентиляционной камере 17. Из подпольного воздухопровода 2 по открытой воздушной заслонке 18 атмосферный воздух под избыточным давлением поступает на вход 10 вихревой трубы 9, в которой происходит расслоение на «холодный» (температура несколько ниже входящего в вихревую трубу атмосферного воздуха) и «горячий» (температура несколько выше входящего в вихревую трубу атмосферного воздуха) потоки воздуха. Холодный поток разделенного в вихревой трубе 9 атмосферного воздуха с заданной по условиям микроклимата внутри здания 7 температуры, например, 18°C по холодного каналу 11 вихревой трубы 9 поступает на вход 12 и в фильтр 13, где очищается от твердых частиц загрязнения, а также от жидких частиц сконденсировавшейся в процессе охлаждения парообразной влаги атмосферного воздуха, а, как известно, чем выше температура атмосферного воздуха, тем больше в нем влаги, при этом отделенные загрязнения в фильтре 13 удаляются из него через установку удаления загрязнений, например конденсатоотводчик поплавкового типа. «Горячий» поток атмосферного воздуха по горячему каналу 14 вихревой трубы 9 направляется в грунтовый воздухопровод 5, где охлаждается, отдавая тепло грунту, а сконденсировавшаяся в процессе охлаждения воздуха влага удаляется через теплопроводящие трубы 6 и дренируется в грунте. Охлажденный в грунтовом воздухопроводе 5 воздух поступает к входу 12 фильтра 13, где окончательно очищается от капельнообразных загрязнений и твердых частиц загрязнений, т.е. доводится до параметров, определяемых заданным микроклиматом в помещении 7. Из фильтра 13 обработанный воздух с заданными параметрами по температуре, влажности и степени очистки от твердых частиц поступает внутрь помещения 7.

Воздух из помещения 7 вентилятором 20, установленным в вентиляционной камере 21, направляется в теплообменный воздухопровод 4, где отдает тепло аккумулятору 8, и по северному воздухопроводу 3 выбрасывается в атмосферу.

Размещение вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает дополнительное накопление тепла, выделяемого через корпус вихревой трубы 9, в процессе расслоения обрабатываемого атмосферного воздуха на «холодный» и «горячий» потоки.

В результате, тепловой аккумулятор 8 накапливает тепловую энергию, поступающую как от теплообменного воздухопровода 4, так и от корпуса вихревой трубы 9.

При снижении температуры нагнетаемого вентилятором 16 атмосферного воздуха ниже гостированной для заданных условий микроклимата здания 7, например в ночное время температура около 15°C, открывается воздушная заслонка 19 (воздушная заслонка 18 закрыта). Атмосферный воздух по южному воздухопроводу 1 вентилятором 16 через открытую воздушную заслонку 19 подается в фильтр 13, где очищается до заданных условиями микроклимата в помещении 7 параметров. Тепловой аккумулятор 8 отдает тепло всасываемому атмосферному воздуху в подпольном воздухопроводе 2, нагревая его до необходимой температуры. Если тепловой энергии, отдаваемой тепловым аккумулятором 8 атмосферному воздуху, движущемуся по подпольному воздухопроводу 2, недостаточно, то осуществляется подогрев отопительной системой (не указано), затраты которой будут снижены, так как значительная часть тепла поступает от теплового аккумулятора 8 и грунта.

Размещение фильтра 13 после вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает снижение энергоемкости очистки нагнетаемого вентилятором 16 через южный 1 воздухопровод атмосферного воздуха внутрь помещения 7 за счет частичной очистки в процессе расслоения обрабатываемого воздуха (часть твердых загрязнений перемещается в горячий поток и дренируется в грунт по теплообменным трубам 6). Также полученное тепло от аккумулятора 8 при низких температурах атмосферного воздуха устраняет возможность обмерзания фильтрующих элементов, приводящего к возрастанию гидравлического сопротивления при температурах атмосферного воздуха, имеющих значение существенно более низкое, чем предусмотрено параметрами микроклимата внутри помещения 7, вихревая труба 9 воздушной заслонкой 18 отключается от подпольного воздухопровода 2. Всасываемый атмосферный воздух нагревается как в южном воздухопроводе 1 за счет использования тепла солнечной радиации (южный воздухопровод выполнен из поглощающего солнечную радиацию материала), так и от теплового аккумулятора 8 в подпольном воздухопроводе 2. В случае недостатка данного тепла для получения заданной температуры воздуха, нагнетаемого вовнутрь помещения 7, применяется отопительная система (не показано) незначительной мощности.

В результате, предлагаемое изобретение позволяет использовать солнечную энергию и аккумулирующие свойства грунта как при положительных, так и при отрицательных температурах атмосферного воздуха, обеспечивая снижение энергозатрат процесса получения заданных параметров микроклимата внутри помещения как по температуре, так и по степени очистки вентилируемого воздуха от загрязнений в виде твердых и каплеобразных загрязнений.

Оригинальность предлагаемого изобретения заключается в том, что оно позволяет при эксплуатации системы гелиотеплохладоснабжения поддерживать заданный режим микроклимата в помещении при оптимизации энергозатрат на привод нагнетательного вентилятора путем снабжения его автоматизированной системой контроля и регулирования подачи атмосферного воздуха по подпольному воздухопроводу. При этом автоматизированная система контроля и регулирования включает регулятор температуры, состоящий из блоков сравнения и задания, электронного и магнитного усилителей, блока нелинейной обратной связи и датчика температуры, установленный у входного отверстия сужающегося сопла, соединенного с южным воздухопроводом, а также регулятором скорости вращения в виде блока порошковых электромагнитных муфт привода нагнетательного вентилятора.

Похожие патенты RU2631040C1

название год авторы номер документа
Система гелиотеплохладоснабжения 2018
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Кобелев Владимир Николаевич
  • Беседин Андрей Владимирович
  • Юшин Василий Валерьевич
  • Протасов Владислав Владимирович
  • Пыхтин Алексей Иванович
RU2724642C2
СИСТЕМА ГЕЛИОТЕПЛОХЛАДОСНАБЖЕНИЯ 2014
  • Емельянов Алексей Сергеевич
  • Кобелев Николай Сергеевич
  • Беседин Андрей Владимирович
  • Титов Виталий Семенович
  • Юшин Василий Валерьевич
  • Протасов Владислав Владимирович
  • Нешина Марина Александровна
  • Горемыкин Игорь Владимирович
RU2554171C1
Система гелиотеплохладоснабжения 2015
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Ежов Владимир Сергеевич
  • Беседин Андрей Владимирович
  • Юшин Василий Валерьевич
  • Протасов Владислав Владимирович
  • Пыхтин Алексей Иванович
  • Коровина Александра Юрьевна
RU2610406C1
Система гелиотеплохладоснабжения 2016
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Кобелев Владимир Николаевич
  • Беседин Андрей Владимирович
  • Юшин Василий Валерьевич
  • Протасов Владислав Владимирович
  • Пыхтин Алексей Иванович
RU2622449C1
СИСТЕМА ГЕЛИОТЕПЛОХЛАДОСНАБЖЕНИЯ С КАЧЕСТВЕННЫМ ВОЗДУХООБМЕНОМ В ЗДАНИЯХ 2013
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Беседин Андрей Владимирович
  • Горемыкин Игорь Владимирович
  • Юшин Василий Валерьевич
  • Завалишина Кристина Николаевна
RU2544403C1
СИСТЕМА ГЕЛИОТЕПЛОХЛАДОСНАБЖЕНИЯ 2013
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Червяков Леонид Михайлович
  • Завалишина Кристина Николаевна
  • Кобелев Владимир Николаевич
  • Ряполов Пётр Алексеевич
  • Аллилуев Валерий Николаевич
RU2538347C1
СИСТЕМА ГЕЛИОТЕПЛОХЛАДОСНАБЖЕНИЯ 2012
  • Кобелев Николай Сергеевич
  • Червяков Леонид Михайлович
  • Емельянов Алексей Сергеевич
  • Завалишина Кристина Николаевна
  • Кобелев Владимир Николаевич
RU2530981C2
Система гелиотеплохладоснабжения 1990
  • Кобелев Николай Сергеевич
  • Мельников Эдуард Викторович
  • Чижов Анатолий Евгеньевич
SU1733871A1
Система гелиотеплохладоснабжения 1985
  • Мельников Эдуард Анатольевич
SU1322038A1
ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ 2014
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Дрёмов Дмитрий Валерьевич
  • Токарева Анастасия Владимировна
  • Телегин Артём Александрович
  • Гончаров Виктор Викторович
  • Рябуха Кирилл Валерьевич
RU2554325C1

Иллюстрации к изобретению RU 2 631 040 C1

Реферат патента 2017 года Система гелиотеплохладоснабжения

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Технический результат по снижению энергозатрат достигается тем, что система гелиотеплохладоснабжения имеет автоматизированную систему контроля и регулирования, содержит регулятор скорости вращения в виде блока порошковых электромагнитных муфт и регулятор температуры с датчиком температуры атмосферного воздуха, установленный у входного отверстия суживающегося сопла, кроме того, регулятор температуры включает блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода нагнетательного вентилятора. 3 ил.

Формула изобретения RU 2 631 040 C1

Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом – с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный – с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, отличающаяся тем, что подпольный воздухопровод соединен с нагнетательным вентилятором, который снабжен приводом с автоматизированной системой контроля и регулирования подачи атмосферного воздуха в помещении, причем автоматизированная система контроля и регулирования содержит регулятор скорости вращения в виде блока порошковых электромагнитных муфт и регулятор температуры с датчиком температуры атмосферного воздуха, установленный у входного отверстия суживающегося сопла, кроме того, регулятор температуры включает блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода нагнетательного вентилятора.

Документы, цитированные в отчете о поиске Патент 2017 года RU2631040C1

Способ производства рудно-угольных брикетов 1960
  • Ефашкин Г.В.
  • Равич Б.М.
SU135091A1
RU 2013144471 A, 10.04.2015
СИСТЕМА ГЕЛИОТЕПЛОХЛАДОСНАБЖЕНИЯ 2013
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Червяков Леонид Михайлович
  • Завалишина Кристина Николаевна
  • Кобелев Владимир Николаевич
  • Ряполов Пётр Алексеевич
  • Аллилуев Валерий Николаевич
RU2538347C1
WO 2015094102 A1, 25.06.2015
US 6220339 B1, 24.04.2001
УСТРОЙСТВО ДЛЯ ВЕНТИЛЯЦИИ ПОМЕЩЕНИЯ 2009
  • Емельянов Сергей Геннадьевич
  • Храмцова Елена Георгиевна
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Кобелев Владимир Николаевич
  • Моржавин Александр Вячеславович
RU2445551C2

RU 2 631 040 C1

Авторы

Кобелев Николай Сергеевич

Беляев Дмитрий Викторович

Бойцова Елена Алексеевна

Тютюнов Дмитрий Николаевич

Студеникина Лариса Ивановна

Бойков Александр Владимирович

Даты

2017-09-15Публикация

2016-05-28Подача