Установка для получения чистой пресной воды при принудительной конденсации влаги из воздуха Российский патент 2017 года по МПК E03B3/28 

Описание патента на изобретение RU2631466C1

Изобретение относится к установкам для получения пресной воды из воздуха, в частности к установкам, использующим возобновляемые источники энергии.

Известна установка, в которой осуществляется аккумуляция холода для его использования в ночное время (Патент RU №2131000, дата опубликования 27.05.1999 г.). Данная установка содержит солнечные электрические батареи, холодильный агрегат, аккумулятор холода, выполненный в виде наполненной водой термоизолированной емкости, соединенной через гидронасос и вентиль с холодильным агрегатом и теплообменником-конденсатором, расположенным в воздуховоде, в котором также находится каплеуловитель и вентилятор. Под отверстием в воздуховоде находится водосборник.

Недостатками установки являются большие затраты энергии на холодильную установку и вентиляционную систему, также сложность проведения очистки поверхности конденсатора от микроскопической пыли, которая, собираясь в углах стыков оребрения трубок конденсатора, образует влажный субстрат, где развивается вредная микрофлора.

Наиболее близким аналогом является установка для получения биологически чистой пресной воды при конденсации влаги из атмосферного воздуха, содержащая солнечные батареи, холодильную систему, водосборник, воздуховод, вентиляционную систему и конденсатор. В ее работе используется солнечная энергия. В воздуховоде размещены испаритель холодильного агрегата и вентилятор. Установка также содержит систему для озонирования воды, получаемой в результате работы установки.

Установка работает следующим образом. За счет электроэнергии, получаемой от солнечных батарей, холодильный агрегат производит холод, который выделяется на теплообменнике-испарителе. Влажный воздух с помощью вентилятора продувается через воздуховод, в котором расположен испаритель. В результате контакта с поверхностью теплообменника-испарителя воздух охлаждается, содержащийся в нем пар становится насыщенным, частично конденсируется на поверхности теплообменника и стекает в водосборник, откуда вода поступает в специальную емкость, где происходит обеззараживание воды путем озонирования. Патент RU 2185482, дата публикации 25.07.2000 г.

Недостатком данной установки являются большие энергозатраты и низкая производительность.

Отметим, что концентрация паров воды в атмосфере тех областей Земли, где эффективны такие системы получения пресной воды, изменяется от 10 г/л до 25 г/л. При этом извлекается не вся влага. Если предположить, что будет извлекаться 1 г из кубометра воздуха, то для получения 1 литра воды потребуется прокачать 10003 м воздуха. При скорости прокачки 10 м/с и площади конденсатора, перпендикулярной потоку воздуха, равной 0,252, потребуется около 7 минут. Время контакта воздуха с охлаждающей поверхностью достаточно короткое, а эффективность работы конденсаторов влаги определяется интенсивностью теплообмена между хладоагентом, находящимся внутри металлических трубок конденсаторов, и потоком обтекающего его влажного воздуха. Повышение эффективности теплообмена достигается за счет оребрения трубок конденсатора. Однако при этом значительно увеличивается расход энергии вентилятора на турбулизацию потока, а на ребрах и местах их соединения с трубками конденсатора помимо влаги оседает микроскопическая пыль, в результате чего образуется субстрат, на котором развивается микрофлора и который может содержать токсичные вещества, поступающие вместе с пылью.

Последнее обстоятельство требует проведения регламентных работ по очистке конденсирующей поверхности конденсатора, чему препятствует сильная развитость сребренной поверхности и наличие множества мест на стыках ребер и трубок, где скапливается субстрат. Использование озонатора не может решить проблему полной очистки воды, получаемой в системе, от токсичных веществ (в частности, тяжелых металлов) и микроорганизмов, которые могут содержаться в кусочках микровзвеси, срываемой с конденсатора влаги. Нанесение антибактерицидных покрытий недопустимо, так как вода далее используется в качестве питьевой.

Задачей изобретения является увеличение эффективности работы установки за счет уменьшения затрат энергии на холодильную установку и улучшение качества получаемой пресной воды за счет создания условий, неблагоприятных для роста микрофлоры на стенках теплообменника, без снижения эффективности работы установки.

Технический результат достигается тем, что в установку для получения биологически чистой пресной воды при конденсации влаги из атмосферного воздуха, содержащую солнечные батареи, водосборник, воздуховод, вентиляционную систему и конденсатор, введен в качестве конденсатора автомобильный радиатор из нержавеющей стали.

Указанный технический результат достигается посредством установки для получения чистой пресной воды при принудительной конденсации влаги из воздуха, состоящая из воздуховода, вентиляционной системы и конденсатора, при этом установка содержит два герметичных короба (верхний и нижний), в которых находится испаритель; верхний короб закрыт стеклом, имеет три пластмассовых трубы: две диаметром 100 мм, одна из которых соединена с центробежным воздушным насосом, и третью для водопроводной воды диаметром 15 мм; в нижний короб входят две пластмассовые трубы диаметром 100 мм из верхнего короба, а также две водопроводные трубы диметром 15 мм одна из верхнего короба, а другая диаметром 15 мм от водопроводной линии; внутри нижнего короба установлен радиатор, в который входит одна водопроводная труба и выходит другая; одна труба соединена с водопроводной линией краном, а другая соединена с коробом и вентилем; внутри верхнего короба эта труба имеет множество мелких отверстий для распыления водопроводной воды по дну верхнего короба, при этом в качестве радиатора использован автомобильный водяной радиатор с заглушками, в рабочем состоянии верхний короб установлен с наклонном в сторону солнечной стороны на некоторой высоте (примерно 1-2 метра), под ним в углублении (примерно 0,5 м) установлен нижний короб, который должен быть в тени. В качестве пластмассовых труб (воздуховодов) использованы полипропиленовые канализационные трубы с угловыми соединениями; в качестве центробежного воздушного насоса может быть использован насос для поддержания давления в надувных аттракционах. Причем использован иной принцип работы, а именно принудительный принцип испарения влаги под действием солнечного тепла и ее конденсация. В качестве исходного сырья применяется водопроводная вода, имеющая меньшую температуру, чем окружающий воздух и в качестве конденсатора применяется автомобильный радиатор.

Положительный эффект достигается за счет того, что герметичная, остеклованная испарительная камера нагревается солнечной энергией повышающей испарение воды, что совместно с автомобильным радиатором, значительно увеличивает эффективность установки.

На рис. 1 представлена схема установки, поясняющая сущность изобретения.

Устройство содержит: 1 - резервуар для чистой воды; 2 - кран подачи водопроводной воды; 3 - конденсатор (автомобильный радиатор); 4 - прямой воздуховод; 5 - дно верхнего короба; 6 - стеклянная крышка верхнего короба; 7 - центробежный воздушный насос; 8 - труба с множеством отверстий; 9 - кран подачи воды в испаритель; 10 - обратный воздуховод; 11 - труба подачи воды; 12 - кран выпуска чистой воды; 13 - верхний короб.

Предлагаемая установка конструктивно состоит из: 2-х коробов, в которых находятся испаритель (13) и конденсатор (1). Короба изготовлены из оцинкованной жести толщиной 0,5 мм. Верхний короб (13) закрыт стеклом (6) и имеет размеры 1000×1200×40 мм. Короб имеет три отверстия, в которые входят две пластмассовые трубы (4, 10) диаметром 100 мм (для прокачки воздушно-капельной смеси) и одна труба для подачи водопроводной воды диаметром 15 мм, короб полностью герметичен. Труба (7) соединена с центробежным воздушным насосом. Нижний короб (1) полностью изготовлен из оцинкованной жести толщиной 0,5 мм, имеет размеры 900×900×40 мм, герметичен. В короб входят две пластмассовые трубы (10, 4) диаметром 100 мм из верхнего короба (13), также в короб входят две водопроводные трубы диметром 15 мм одна (11) из верхнего короба, а другая диаметром 15 мм от водопроводной линии (2). С одной стороны нижний короб (1) имеет сливное отверстие с краном (12). Внутри короба (1) установлен радиатор (3), в который входит водопроводная труба (2) и выходит другая водопроводная труба (11). Труба (2) соединена с водопроводной линией краном. Труба (11) соединена с коробом (6) вентилем (9), далее внутри верхнего короба (13) эта труба (8) имеет множество мелких отверстий для распыления водопроводной воды по дну (5) верхнего короба (13). В качестве радиатора (3) используется автомобильный водяной радиатор с заглушками. В рабочем состоянии верхний короб (13) устанавливается с наклоном в сторону солнечной стороны на некоторой высоте (примерно 1-2 м), под ним в углублении (примерно 0,5 м) устанавливается короб (1), который должен быть в тени. В качестве пластмассовых труб (воздуховодов) используются полипропиленовые канализационные трубы с угловыми соединениями, это позволяет тщательно герметизировать все соединения. В качестве центробежного воздушного насоса 7 можно использовать насос для поддержания давления в надувных аттракционах.

Установка работает следующим образом: водопроводная вода через кран 2 и автомобильный радиатор 3 поступает через кран 9 в верхний короб 13, который нагревается солнечными лучами. Верхний короб 13 накрыт стеклом 6 и при солнечной погоде вода на дне 5 короба 13 нагревается до 80°С. Далее, эта насыщенная влагой воздушная смесь отсасывается насосом 7 в нижний короб 1, который расположен в тени или утоплен в земле для теплоизоляции. Насыщенная воздушная смесь проходит через автомобильный радиатор, внутри которого холодная водопроводная вода и влага конденсируется на стенках радиатора. Так как внутри радиатора находится проточная водопроводная вода температурой примерно 20°С, то температура в нижнем коробе 1 не будет сильно повышаться. Собранная чистая вода периодически выпускается через кран 12. Центробежный вентилятор 7 мощностью 200 Вт питается от солнечной батареи (на рис. 1 не показан). По теории, при 80°С в одном куб. м влажного воздуха содержится 80 г воды. Если будет конденсироваться 10% этой воды, то при производительности насоса в 200 куб. м в час получим 1600 мл в час, а за световой день, 16 л чистой воды.

Таким образом, установка позволит получать экологически чистую воду, используя энергию солнца и принудительную конденсацию из воздушно-капельной смеси.

Похожие патенты RU2631466C1

название год авторы номер документа
АВТОНОМНАЯ УСТАНОВКА ДЛЯ КОНДЕНСАЦИИ ПРЕСНОЙ ВОДЫ ИЗ АТМОСФЕРНОГО ВОЗДУХА 2004
  • Семенов И.Е.
RU2256036C1
Пневмоэкстрактор атмосферной влаги (варианты) 2019
  • Серебряков Рудольф Анатольевич
  • Бирюк Владимир Васильевич
  • Акобян Рудик Хачикович
  • Доржиев Сергей Содномович
RU2717043C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ ЧИСТОЙ ПРЕСНОЙ ВОДЫ ПРИ КОНДЕНСАЦИИ ВЛАГИ ИЗ АТМОСФЕРНОГО ВОЗДУХА 2000
  • Алексеев В.В.
  • Алексеева О.В.
RU2185482C2
СПОСОБ ПОЛУЧЕНИЯ ВОДЫ ИЗ ВОЗДУХА 1999
  • Ладыгин А.В.
RU2146744C1
УСТАНОВКА ДЛЯ КОНДЕНСАЦИИ ПРЕСНОЙ ВОДЫ ИЗ АТМОСФЕРНОГО ВОЗДУХА 1998
  • Алексеев В.В.
  • Алексеев И.В.
  • Рустамов Нариман Ахмед Оглы
RU2131001C1
Установка экстракции воды из воздуха на базе солнечного модуля с параболоторическим концентратором и двигателем Стирлинга 2018
  • Доржиев Сергей Содномович
  • Майоров Владимир Александрович
  • Базарова Елена Геннадьевна
  • Розенблюм Мария Игоревна
RU2694308C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПРЕСНОЙ ВОДЫ ИЗ АТМОСФЕРНОГО ВОЗДУХА 1998
  • Алексеев В.В.
  • Рустамов Нариман Ахмед Оглы
  • Чекарев К.В.
RU2131000C1
Способ получения питьевой воды в акватории Черного моря 2022
  • Кияница Виталий Иванович
  • Лукашина Светлана Вячеславовна
RU2786416C1
ОПРЕСНИТЕЛЬ МОРСКОЙ ВОДЫ КАШЕВАРОВА "ОМВК" 1996
  • Кашеваров Юрий Борисович
RU2099289C1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВЛАЖНОСТИ ВОЗДУХА В ОБИТАЕМОМ ОТСЕКЕ ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО АППАРАТА 2007
  • Цихоцкий Владислав Михайлович
  • Рябкин Александр Моисеевич
  • Железняков Александр Григорьевич
  • Елчин Анатолий Петрович
  • Нежурин Алексей Анатольевич
  • Романов Сергей Юрьевич
  • Телегин Александр Анатольевич
RU2361789C2

Иллюстрации к изобретению RU 2 631 466 C1

Реферат патента 2017 года Установка для получения чистой пресной воды при принудительной конденсации влаги из воздуха

Изобретение относится к установкам, использующим возобновляемые источники энергии. Установка состоит из воздуховода, вентиляционной системы и конденсатора (3), двух герметичных коробов - верхнего (13) и нижнего (1), в которых находится испаритель. Верхний короб (13) закрыт стеклом и имеет три пластмассовые трубы: две диаметром 100 мм, одна из которых (4) соединена с центробежным воздушным насосом (7), и третью для водопроводной воды (11) диаметром 15 мм. В нижний короб входят две пластмассовые трубы диаметром 100 мм (10 и 4) из верхнего короба (13), а также две водопроводные трубы диметром 15 мм: одна (11) из верхнего короба (13), а другая диаметром 15 мм от водопроводной линии. Внутри нижнего короба (1) установлен конденсатор (3), в который входит одна водопроводная труба и выходит другая (11). Одна труба соединена с водопроводной линией краном (2), а другая (11) соединена с коробом (13) и вентилем (9). Внутри верхнего короба (13) труба (11) имеет множество мелких отверстий (8) для распыления водопроводной воды по дну верхнего короба (13). В качестве конденсатора (3) использован автомобильный водяной радиатор с заглушками. В рабочем состоянии верхний короб (13) установлен с наклонном в сторону солнечной стороны на высоте примерно 1-2 метра, под ним в углублении 0,5 м установлен нижний короб (1), который должен быть в тени. В качестве центробежного воздушного насоса (7) может быть использован насос для поддержания давления в надувных аттракционах, причем использован принудительный принцип испарения влаги под действием солнечного тепла и ее конденсация. В качестве исходного сырья применяется водопроводная вода, имеющая меньшую температуру, чем окружающий воздух. Обеспечивается получение экологически чистой воды с использованием энергии солнца и принудительной конденсации из воздушно-капельной смеси. 1 ил.

Формула изобретения RU 2 631 466 C1

Установка для получения чистой пресной воды при принудительной конденсации влаги из воздуха, состоящая из воздуховода, вентиляционной системы и конденсатора, отличающаяся тем, что установка содержит два герметичных короба - верхний и нижний, в которых находится испаритель, верхний короб закрыт стеклом, имеет три пластмассовые трубы: две диаметром 100 мм, одна из которых соединена с центробежным воздушным насосом, и третью для водопроводной воды диаметром 15 мм, в нижний короб входят две пластмассовые трубы диаметром 100 мм из верхнего короба, а также две водопроводные трубы диметром 15 мм одна из верхнего короба, а другая диаметром 15 мм от водопроводной линии, внутри нижнего короба установлен конденсатор, в который входит одна водопроводная труба и выходит другая, одна труба соединена с водопроводной линией краном, а другая соединена с коробом и вентилем; внутри верхнего короба эта труба имеет множество мелких отверстий для распыления водопроводной воды по дну верхнего короба, при этом в качестве конденсатора использован автомобильный водяной радиатор с заглушками, в рабочем состоянии верхний короб установлен с наклонном в сторону солнечной стороны на высоте 1-2 метра, под ним в углублении 0,5 м установлен нижний короб, который должен быть в тени, в качестве центробежного воздушного насоса может быть использован насос для поддержания давления в надувных аттракционах, причем использован иной принцип работы, а именно принудительный принцип испарения влаги под действием солнечного тепла и ее конденсация, в качестве исходного сырья применяется водопроводная вода, имеющая меньшую температуру, чем окружающий воздух.

Документы, цитированные в отчете о поиске Патент 2017 года RU2631466C1

US 4219387 A, 26.08.1980
СОЛНЕЧНАЯ УСТАНОВКА ДЛЯ ОЧИСТКИ И ОПРЕСНЕНИЯ ВОДЫ 2010
  • Махлин Захар Борисович
RU2451641C2
УСТАНОВКА ДЛЯ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ 1997
  • Марков В.С.
RU2128144C1
US 4536257 A, 20.08.1985
US 4861435 A, 29.08.1989
СПОСОБ ПОЛУЧЕНИЯ ВОДЫ ИЗ ВОЗДУХА 1999
  • Ладыгин А.В.
RU2146744C1

RU 2 631 466 C1

Авторы

Турдуматов Болот Мусаевич

Моисейкина Людмила Гучаевна

Даты

2017-09-22Публикация

2016-04-05Подача