ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА Российский патент 2017 года по МПК H01C7/12 

Описание патента на изобретение RU2633390C2

Настоящее изобретение относится к ветроэнергетической установке.

Ветроэнергетические установки содержат аэродинамический ротор обычно с тремя лопастями ротора, которые приводят ротор во вращательное движение в случае наличия ветра. Ротор непосредственно или опосредованно связан с электрическим генератором, который вырабатывает электрическую мощность, когда ротор приводит электрический генератор в движение. В определенных эксплуатационных состояниях ветроэнергетической установки на выходе генератора могут возникать пики напряжения. Чтобы уменьшить воздействие этих пиков напряжения, избыточная электрическая энергия может быть преобразована в тепло. Это может осуществляться, например, посредством нагрузочных резисторов.

По приоритетной немецкой заявке Ведомство Германии по патентам и товарным знакам выявило следующие документы: DE 102008049630 A1, DE 2102009004318 A1 и US 2012/0025804 A1.

Задачей изобретения является создание ветроэнергетической установки, которая была бы способна эффективно преобразовывать в тепло выработанную электрическим генератором электрическую мощность.

Эта задача решается посредством ветроэнергетической установки по п. 1 формулы изобретения.

Таким образом, предложена ветроэнергетическая установка, содержащая ротор, по меньшей мере, с двумя лопастями ротора, электрический генератор, непосредственно или опосредованно связанный с ротором и вырабатывающий электрическую мощность, и, по меньшей мере, один силовой электронный блок, предназначенный для преобразования входного напряжения с входной частотой в выходное напряжение с выходной частотой. Силовой электронный блок содержит, по меньшей мере, один варисторный блок. Последний содержит, по меньшей мере, один варисторный диск с зависимым от напряжения сопротивлением и, по меньшей мере, один металлический диск, который находится в контакте, по меньшей мере, с одним варисторным диском и предусмотрен в качестве охлаждающего элемента для охлаждения варисторного диска. Варисторный блок может обладать зависимым от напряжения сопротивлением. Металлические диски имеют хорошую теплопроводность, так что они могут хорошо использоваться для охлаждения варисторных дисков.

Согласно одному аспекту настоящего изобретения, по меньшей мере, один варисторный блок содержит корпус, а корпус залит заливочной массой, чтобы повысить теплоемкость варисторного блока.

Согласно другому аспекту изобретения, несколько варисторных блоков термически связаны между собой стяжным элементом.

Согласно другому аспекту изобретения, три варисторных блока соединены друг с другом по схеме «треугольник», образуя один трехфазный варисторный блок.

Согласно другому аспекту настоящего изобретения, присоединительные провода для варисторного блока с одной стороны варисторного блока выводятся наружу.

В основе изобретения лежит идея того, что в определенных эксплуатационных состояниях ветроэнергетической установки, например при сбросе нагрузки, на генераторе могут возникнуть пики напряжения, которые могут привести к повреждению разрядников защиты от перенапряжения на генераторе и других деталей. Для уменьшения таких пиков напряжения на генераторе предусмотрен, согласно изобретению, по меньшей мере, один варисторный блок. Он может быть расположен, например, в шкафу управления гондолой.

Другие варианты осуществления изобретения являются объектом зависимых пунктов формулы.

Преимущества и примеры осуществления изобретения более подробно поясняются ниже со ссылкой на чертежи. На чертежах показано:

фиг. 1: схематичный вид ветроэнергетической установки, согласно изобретению;

фиг. 2А: схематичный вид варисторного блока согласно первому примеру выполнения;

фиг. 2В: другой схематичный вид варисторного блока согласно первому примеру выполнения;

фиг. 2С: вид сверху на варисторный блок согласно первому примеру выполнения.

На фиг. 1 изображен схематичный вид ветроэнергетической установки, согласно изобретению. Ветроэнергетическая установка 100 содержит башню 102 и гондолу 104. На гондоле 104 установлен ротор 106 с тремя лопастями 108 ротора и обтекателем 110. При работе ротор 106 приводится ветром во вращательное движение, вращая, тем самым, также ротор электрического генератора 200 в гондоле 104. Угол наклона лопастей 108 ротора можно изменять посредством двигателей наклона на основаниях соответствующих лопастей 108 ротора.

В гондоле 104 установлен генератор 200. В гондоле 104 может быть предусмотрен первый силовой электронный блок 300, а в зоне основания башни 102 – второй силовой электронный блок 400. Первым силовым электронным блоком 300 может быть, например, выпрямитель. В качестве альтернативы этому первый силовой электронный блок 300 может представлять собой также шкаф управления гондолой или фильтрующий блок.

Второй силовой электронный блок 400 может представлять собой, например, инвертор.

Первый и/или второй силовой электронный блок 300 и/или 400 может содержать, по меньшей мере, один варисторный блок, согласно изобретению.

На фиг. 2А изображен схематичный вид варисторного блока в первом примере выполнения. Варисторный блок 500 может быть предусмотрен в первом и/или втором силовом электронном блоке 300 и/или 400 и может служить для преобразования электрической мощности в тепло.

Варисторный блок 500 содержит на своей первой стороне изолятор 510, первый металлический диск 520, первый варисторный диск 530, второй металлический диск 540, второй варисторный диск 530, третий металлический диск 540 и четвертый металлический диск 550. Четвертый металлический диск 550 может служить также крышкой. Согласно первому примеру, варисторные диски находятся тем самым в постоянном контакте, по меньшей мере, с одним металлическим диском, преимущественно с двумя металлическими дисками, и могут обладать зависимым от напряжения сопротивлением. Толщина второго и третьего металлических дисков 540 больше толщины варисторных дисков. Второй и третий металлические диски 540 изготовлены преимущественно из металла, обладающего хорошей теплопроводностью. Преимущественно объем второго и третьего металлических дисков 540 существенно больше объема варисторных дисков 530. Первый, второй, третий и четвертый металлический диск и варисторные диски 530 могут быть закреплены друг на друге, например, посредством штанг 590, причем штанги 590 привинчены к первому и четвертому металлическим дискам 520, 550, а варисторные диски 530 и второй и третий металлические диски 540 расположены стопой между ними.

На фиг. 2В изображен другой схематичный вид варисторного блока согласно второму примеру выполнения. Дополнительно к виду на фиг. 2А, по меньшей мере, частично изображен также корпус 501. Он может быть выполнен, например, цилиндрическим. Варисторный блок размещается внутри корпуса 501, который затем может быть залит заливочной массой, что также является предпочтительным в отношении повышения теплоемкости.

На фиг. 2В показаны также присоединительные провода 570 и опциональные присоединительные клеммы 580.

На фиг. 2С изображен вид сверху на варисторный блок в первом примере выполнения. При этом виден, в частности, четвертый металлический диск 550.

За счет использования варисторного блока в первом примере выполнения в первом силовом электронном блоке 300, который соединен, например, с присоединительными клеммами генератора 200, можно ограничить высокоэнергетические перенапряжения на выходных клеммах генератора. В частности, компактная конструкция варисторного блока предпочтительна, поскольку его можно тем самым встроить в уже имеющиеся силовые шкафы или в силовые электронные блоки.

Подключение описанного выше варисторного блока может осуществляться напрямую к сети трехфазного тока.

За счет соединения варисторных дисков 530 с металлическими дисками 540 может быть достигнута термическая связь, так что созданное варисторными дисками 530 тепло может передаваться на металлические диски 540. Это значительно увеличивает теплоемкость соответствующих варисторных блоков 500, что обеспечивает также улучшенный теплоотвод.

За счет использования предложенных варисторных блоков ветроэнергетическая установка может очень быстро реагировать на сброс нагрузки. Непосредственно после сброса нагрузки выработанная электрическая мощность генератора может преобразовываться варисторными блоками в тепло. За счет использования предложенных варисторных блоков может быть покрыт тот отрезок времени (или соответственно выработанная за этот отрезок времени электрическая мощность), вплоть до которого можно изменить угол наклона лопастей ротора и уменьшить выработанную электрическим генератором мощность. В этот отрезок времени, вплоть до которого можно уменьшить выработанную генератором мощность, могут использоваться предложенные варисторные блоки, чтобы, по меньшей мере, кратковременно преобразовать выработанную мощность в тепло.

Согласно изобретению, металлические диски, находящиеся в контакте с варисторными дисками, выполняются большого объема, так что эти металлические диски обладают большой теплопроводностью, благодаря чему выработанное в варисторных дисках тепло может передаваться на металлические диски. За счет большой теплоемкости предложенных варисторных блоков они могут также быстрее снова активироваться, поскольку варисторные диски охлаждаются быстрее.

Варисторные диски обладают зависимым от напряжения сопротивлением.

Похожие патенты RU2633390C2

название год авторы номер документа
СТАТОР СИНХРОННОГО ГЕНЕРАТОРА И СИНХРОННЫЙ ГЕНЕРАТОР 2014
  • Реэр, Йохен
  • Файт, Мануэль
  • Йепсен, Торстен
RU2628100C2
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА И СПОСОБ ЭКСПЛУАТАЦИИ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2014
  • Хиллинг Кристоф
RU2633295C2
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2014
  • Реэр Йохен
  • Келер Ян-Филлип
RU2638230C2
ЛОПАСТЬ РОТОРА ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2017
  • Камруззаман, Мохаммад
  • Напирала, Кристиан Франк
  • Свеерс, Хайнер
RU2709228C1
ВЕТРОЭНЕРГЕТИЧЕСКАЯ ИЛИ ГИДРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2010
  • Хайн Петер
RU2540415C2
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2012
  • Бреннер Альбрехт
  • Кнооп Франк
  • Уббен Маттиас
RU2560642C2
СПОСОБ КОНТРОЛЯ НЕСКОЛЬКИХ ЭЛЕКТРИЧЕСКИХ ПРОВОДОВ ЭЛЕКТРОЭНЕРГИИ ЖГУТА ПРОВОДОВ 2013
  • Де Боер Йоахим
RU2605081C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ЭКСПЛУАТАЦИИ ВЕТРОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2017
  • Де Боер, Вольфганг
RU2718394C1
СВЕТОВОЙ ЭЛЕМЕНТ И СПОСОБ ОСВЕЩЕНИЯ КОНСТРУКТИВНОГО ЭЛЕМЕНТА ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ, А ТАКЖЕ КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ И ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2017
  • Хармс, Штефан
  • Хоффманн, Александер
  • Гренхаген, Яннес
  • Финке, Даниэль
  • Шимковяк, Феликс
RU2718380C1
СЕКЦИЯ СТАЛЬНОЙ БАШНИ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ДЛЯ БАШНИ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2018
  • Керстен, Рой
  • Ланге, Рональд
  • Рандель, Бритта
RU2741354C1

Иллюстрации к изобретению RU 2 633 390 C2

Реферат патента 2017 года ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Изобретение относится к электротехнике. Ветроэнергетическая установка содержит ротор с лопастями, электрический генератор, связанный с ротором, и силовой электронный блок, содержащий варисторный блок и предназначенный для преобразования входного напряжения с входной частотой в выходное напряжение с выходной частотой. Варисторный блок содержит варисторный диск с зависимым от напряжения сопротивлением и металлический диск, находящийся в контакте с варисторным диском, предназначенный для охлаждения варисторного диска. Технический результат заключается в повышении надежности устройства за счет предотвращения пиков напряжения на генераторе при сбросе нагрузки. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 633 390 C2

1. Ветроэнергетическая установка, содержащая

ротор (110), по меньшей мере, с двумя лопастями (108) ротора,

электрический генератор (200), содержащий выходные клеммы и непосредственно или опосредованно связанный с ротором (110) , с возможностью генерирования электрической мощности, и,

по меньшей мере, один силовой электронный блок (300, 400), предназначенный для преобразования входного напряжения с входной частотой в выходное напряжение с выходной частотой,

причем силовой электронный блок (300, 400) содержит, по меньшей мере, один варисторный блок (500), выполненный с возможностью ограничивать высокоэнергетические перенапряжения на выходных клеммах генератора,

причем варисторный блок (500) содержит:

по меньшей мере, один варисторный диск (530) с зависимым от напряжения сопротивлением и

первый металлический диск (520) в непосредственном контакте с одной стороной, по меньшей мере, одного варисторного диска (530) и второй металлический диск (540) в непосредственном контакте с другой стороной в качестве охлаждающего элемента для охлаждения варисторного диска (530),

причем толщина, по меньшей мере, одного из упомянутых металлических дисков (520, 540) больше толщины варисторного диска (530),

причем объем, по меньшей мере, одного из упомянутых металлических дисков (520, 540) больше объема, по меньшей мере, одного варисторного диска (530).

2. Ветроэнергетическая установка по п. 1, причем

варисторный блок (500) содержит корпус (501), окружающий, по меньшей мере, один варисторный диск (530) и, по меньшей мере, один из упомянутых металлических дисков (520, 540),

причем корпус (501) залит заливочной массой для повышения теплопроводности.

3. Ветроэнергетическая установка по п. 1, причем три варисторных блока (500) электрически подключены друг к другу по схеме «треугольник», образуя трехфазный варисторный блок.

Документы, цитированные в отчете о поиске Патент 2017 года RU2633390C2

WO 2010070403 A1, 24.06.2010
US 5936824 A, 10.08.1999
US 4851955 A, 25.07.1989
RU 2010149481 A, 10.07.2012.

RU 2 633 390 C2

Авторы

Берентс, Герд

Шробсдорфф, Зимон

Даты

2017-10-12Публикация

2014-06-16Подача