СПОСОБ ИНТЕРВАЛЬНОГО МНОГОСТАДИЙНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИНАХ Российский патент 2017 года по МПК E21B43/267 

Описание патента на изобретение RU2634134C1

Изобретение относится к способам разработки нефтяных и газовых месторождений горизонтальными скважинами для реализации интервального многостадийного гидравлического разрыва пласта (ГРП) с помощью кумулятивной перфорации и композитных пакер-пробок.

Известна технология многостадийного ГРП, предполагающая цементирование обсадной колонны, кумулятивную перфорацию и систему шаров с седлами для пакеровки зон ГРП (см. Traditional plug-and-perf completions are the method of choice for most unconventional operators, http://assets.cmp.bh.mxmcloud.com/system/60/dfc2202d2e11e4866c51cc8dea4697/41667_cmntd_multistage_cmpltn_broc2.pdf, оп. в 2014 г.). Эта технология представляет собой традиционную систему заканчивания скважин типа "plug-and-perf" и обеспечивает доступ к стволу скважины после разбуривания пробки. Однако она позволяет проводить ГРП стадий на такие расстояния, насколько это может позволить каротажный кабель, недостаток которого заключается в сложности его продвижения на большие расстояния по горизонтальному стволу скважины.

Известен способ перфорирования ствола скважины в нескольких перспективных зонах, включающий цементирование обсадной колонны, использование стреляющих саморазрушающихся перфораторов, а также пробки для гидроразрыва и мостовые пробки, при этом спуск рабочих инструментов производится с помощью либо проволочной линии, троса или линии электрокабеля (см. патент RU на изобретение №2571460, Е21В 23/04, оп. в 2015 г.). Это техническое решение направлено на создание автономного скважинного инструмента, выполненного с возможностью саморазрушения. Оно приводит к значительному усложнению и увеличению расходов инструментов в процессе ГРП. Проволочные линии, тросы или электрокабели ограничивают глубину спуска пробок и перфоратора в скважину, а в случае запесочивания ствола скважины при ГРП - усложняют процесс очистки ствола скважины от проппанта.

Известен способ гидравлического разрыва пласта в двух параллельных горизонтальных стволах скважин, включающий определение направления главного напряжения пласта, бурение двух параллельных горизонтальных стволов, их обсаживание, цементирование и перфорирование, и гидравлический разрыв пласта, при этом два горизонтальных параллельных ствола бурят в одной горизонтальной плоскости по направлению минимального напряжения, рассчитывают с учетом главного напряжения пласта оптимальное расположение трещин и определяют расположение точек инициации трещин гидравлического разрыва пласта - ГРП, проводят в обоих горизонтальных стволах перфорирование и ГРП первой стадии, изолируют интервалы, на которых была проведена первая стадия ГРП установкой фрак-перемычек, затем проводят перфорирование, ГРП и изоляцию установкой фрак-перемычек следующей стадии со смещением точек инициации трещин ГРП, причем расположение точек инициации ГРП определяют таким образом, чтобы трещины на одном стволе скважины были ориентированы в промежуточную зону другого ствола скважины (см. патент на изобретение RU №2561420, Е21В 43/26, оп. в 2015 г.). Известный способ направлен на интенсификацию нефтедобычи в определенных условиях расположения пластов. Имеет узкую специализацию и значительно увеличивает время, затраченное на подготовительные работы при ГРП, при этом возможны риски ориентирования трещин, направленных не по программе работ.

Наиболее близким техническим решением к заявленному изобретению является способ поинтервального гидравлического разрыва карбонатного пласта в горизонтальном стволе скважины с подошвенной водой, включающий бурение горизонтального ствола скважины в продуктивном пласте с цементированием кольцевого пространства между обсадной колонной и горной породой, спуск в горизонтальный ствол скважины на колонне труб перфоратора и выполнение перфорационных отверстий в горизонтальном стволе скважины, спуск колонны труб с пакером в скважину, посадку пакера, закачку по колонне труб жидкости разрыва и формирование трещин гидравлического разрыва пласта в горизонтальном стволе скважины (см. патент RU на изобретение №2558058, Е21В 43/27, оп. в 2015 г.). В этом способе предусмотрено использование надувных пакеров и закачивание в скважину вязкого геля с плотностью, большей плотности воды, кислотного вязкоупругого состава, освоение скважины свабированием, при этом вязкоупругий гель разжижается при контакте с пластовыми флюидами и деблокирует дренируемые участки горизонтального ствола скважины, а затем извлекается из скважины. Этот достаточно сложный способ ГРП включает несколько затяжных по времени этапов работы со скважиной, которые влияют на скорость освоения скважины и цену конечного продукта.

Настоящее изобретение направлено на решение технической проблемы:

- невозможности проведения высокоскоростного ГРП из-за технических ограничений существующих технологий;

- использования дорогостоящего оборудования;

- значительной сложности подготовки к стадиям ГРП;

- неоправданного количества спуско-подъемных операций ГНКТ.

Решение поставленной технической проблемы достигается тем, что в способе интервального многостадийного гидравлического разрыва пласта (ГРП) в нефтяных и газовых скважинах, включающем интервальный спуск кумулятивного перфоратора с использованием ГНКТ (гибкой насосно-компрессорной трубы), выполнение перфорации в горизонтальных участках эксплуатационной колонны, цементного кольцевого пространства, горной породы (продуктивного пласта), закачивание жидкости разрыва и проппанта в продуктивный пласт для формирования и закрепления трещин после гидравлического разрыва, интервальную установку в горизонтальных участках эксплуатационной колонны пакеров, на первой стадии ГРП производят спуск кумулятивного перфоратора без пакера, а для подготовки последующих стадий ГРП используют кумулятивный перфоратор с пакером, причем в качестве пакера используют установленную впереди перфоратора с посадочной камерой композитную взрывную пакер-пробку, выдерживающую перепад давления не менее 700 атм, при этом пакер-пробку связывают с перфоратором соединительным устройством, а для инициирования композитной взрывной пакер-пробки и кумулятивного перфоратора используют пропущенный через ГНКТ кабель-канал (геофизический кабель), который передает различные кодированные электрические импульсы, причем один импульс инициирует пороховой заряд для установки и отсоединения композитной взрывной пакер-пробки от кумулятивного перфоратора, а другой импульс инициирует сам кумулятивный перфоратор, при этом установку пакер-пробки и перфорацию производят за одну спуско-подъемную операцию. Проппант на всех стадиях ГРП продавливают с помощью, например полиуретанового продавочного шара. Выполняют продвижение по стволу скважины кумулятивного перфоратора с композитной взрывной пакер-пробкой, а их центрирование осуществляют за счет использования двух центраторов на роликах (катках), расположенных на подвеске ГНКТ с обеих сторон перфоратора. Отсоединение пакер-пробки от перфоратора осуществляют усилием на разрыв и сломом соединительных шпилек соединительного штока за счет избыточного давления образованного в посадочной камере в результате горения порохового заряда. Обеспечивают использование равнопроходных диаметров компоновок под ГРП и хвостовика.

Изобретение поясняется чертежами. На фиг. 1 схематично изображен горизонтальный участок скважины, подготовленный к проведению многостадийного ГРП. На фиг. 2 и 3 – схемы проведения перфорации удаленной зоны скважины. На фиг. 4 - подъем ГНКТ. На фиг. 5 - гидравлический разрыв пласта и продавливание проппанта в удаленный участок скважины. На фиг. 6 и 7 - установка и отсоединение взрывной пакер-пробки. На фиг. 8 и 9 - перфорация следующего интервала скважины. На фиг. 10 - подъем ГНКТ. На фиг. 11 и 12 - гидравлический разрыв пласта и продавливание проппанта. На фиг. 13-18 - проведение последней стадии гидравлического разрыва пласта на ближнем горизонтальном участке скважины. На фиг. 19 и 20 - разбуривание пакер-пробок, продавочных шаров и вымывание разбуренных обломков из скважины, подъем бурильного инструмента. На фиг. 21 показана готовая к эксплуатации скважина.

Данный способ интервального многостадийного гидравлического разрыва пласта (ГРП) предназначен для реализации с помощью кумулятивных перфораторов и композитных взрывных пакер-пробок в нефтяных и газовых скважинах с различными диаметрами от 89 мм до 178 мм. В варианте, когда проводят ГРП скважины с горизонтальным окончанием, то используют инструменты (компоновки) диаметром, соответствующим внутреннему диаметру вертикального и горизонтального участков скважины. При этом стадии ГРП производят по эксплуатационным колоннам. В том варианте, когда скважина заканчивается хвостовиком с горизонтальным окончанием, то используют компоновки с диаметром, соответствующим внутреннему диаметру хвостовика. В этом случае спускают подвеску колонн труб под ГРП встык хвостовика для образования равного проходного диаметра от устья до текущего забоя скважины. При высокоскоростных ГРП закачка проппанта происходит на высоких скоростях (от 6 м3/мин до 15 м3/мин). При таких расходах жидкость разрыва и проппант подаются непосредственно по стволу скважины в продуктивный пласт, что является важной характеристикой заявленного способа. Высокоскоростные закачки способствуют развитию больших по протяженности трещин разрыва в продуктивном пласте с закачиванием большого количества проппанта (100 т и более) для увеличения площади дренирования продуктивного пласта и, как следствие, увеличения дебита скважины. На высоких скоростях закачки несущей жидкостью ГРП является вода (экологически чистое вещество), а также присадки в виде понизителей трения. Проппант при этом удерживается во взвешенном состоянии по всему стволу скважины. ГРП на воде позволяет исключить кольматацию пласта и удешевить работу за счет исключения геля и других химический реагентов.

На фиг. 1 схематично изображен горизонтальный участок скважины с эксплуатационной колонной 1 и зацементированного кольцевого пространства 2 между колонной 1 и продуктивным пластом 3 (горной породой). Для спуска кумулятивного перфоратора 4 используют гибкую насосно-компрессорную трубу 5 (ГНКТ), соединенную с коннектором 6 (соединительным устройством с циркуляционными окнами и аварийным разъединителем). Через трубу 5 пропущен кабель-канал 7 (геофизический кабель) и соединен с кумулятивным перфоратором 4. При спуске перфоратора 4 через окна в коннекторе 6 циркулирует промывочная жидкость, а кумулятивный перфоратор 4 снабжен двумя центраторами 8 на роликах (катках). В результате центрирования и уменьшения силы трения перфоратора 4 относительно ствола скважины облегчено продвижение всей компоновки на максимальную глубину по горизонтальному участку скважины. Поскольку пропущенный через трубу 5 (ГНКТ) кабель-канал 7 (геофизический кабель) соединен с кумулятивным перфоратором 4, то по кабель-каналу 7 подается кодированный электрический импульс на инициирование кумулятивного перфоратора 4 (см. фиг. 2 и 3). Кумулятивный перфоратор 4 при срабатывании в пределах своей длины (интервала перфорации) создает перфорационные каналы в эксплуатационной колонне 1, цементном камне 2 и продуктивном пласте 3, тем самым обеспечивая гидродинамическую связь скважины с продуктивным пластом 3. После подъема кумулятивного перфоратора 4 производят закачку жидкости разрыва в скважину, а при увеличении давления закачки через перфорационные каналы производят гидравлический разрыв продуктивного пласта 3. Затем в образовавшиеся после разрыва трещины 11 в продуктивном пласте 3 по стволу скважины с помощью технологической жидкости и полиуретанового продавочного шара 10 продавливают проппант 9, тем самым заполняя и закрепляя трещины 11 (см. фиг. 5).

Под следующую стадию ГРП спускают кумулятивный перфоратор 4 с пакер-пробкой 12 и посадочной камерой 13, при этом пакер-пробка 12 связана с ними соединительным штоком 14. Композитная пакер-пробка 12 выполнена с обратным шаровым клапаном, который служит для выравнивания пластового давления с давлением столба жидкости в скважине. На фиг. 6 изображена установка пакер-пробки 12 для изоляции предыдущей стадии ГРП. Ее отсоединение от посадочной камеры 13 (см. фиг. 7) происходит за счет избыточного давления в посадочной камере 13, которое приводит к слому соединительных шпилек соединительного штока 14. Для этого по кабель-каналу 7, который через перфоратор 4 соединен с пороховым зарядом в посадочной камере 13, подают кодированный электрический импульс, предназначенный только для инициирования порохового заряда. В результате горения порохового заряда пороховые газы приводят в действие посадочную камеру 13, которая путем расклинивания плашек устанавливает в нужном интервале пакер-пробку 12 и отсоединяет ее от посадочной камеры 13 с перфоратором 4. Установленная пакер-пробка 12 надежно перекрывает предыдущий обработанный интервал от последующей стадии ГРП. Затем перфоратор 4 подъемом трубы 5 перемещают в следующий интервал перфорирования эксплуатационной колонны 1 и с помощью другого кодированного электрического импульса по кабель-каналу 7 производят его инициирование (см. фиг. 9). Далее повторяют операцию по гидравлическому разрыву пласта 3, продавливанию проппанта 9 с помощью технологической жидкости и полиуретанового продавочного шара 10 в трещины 11 продуктивного пласта 3 (см. фиг. 11). На фиг. 6 и 12 показано, что заход за зону интервала перфорации продавочного шара 10 свидетельствует о том, что проппант 9 и технологическая жидкость полностью продавились в трещины 11 продуктивного пласта 3.

На фиг. 13-20 изображено проведение конечной стадии ГРП, включающее спуск в скважину такой компоновки: бурильного инструмента с забойным двигателем 15 на трубе 5 (ГНКТ). Производят циркуляцию промывочной жидкости, разбуривание пакер-пробок 12 и продавочных шаров 10 с помощью бурильного инструмента с забойным двигателем 15. При этом производят одновременное вымывание разбуренных обломков из скважины, а затем подъем всей компоновки. На фиг. 21 показана готовая к эксплуатации скважина.

Количество стадий ГРП, протяженность интервалов перфорации для каждой стадии и количество закачиваемого проппанта и технологической жидкости зависят от геолого-технических характеристик скважины и пласта. Возможен вариант использования композитный пакер-пробки 12 без шарового обратного клапана в зависимости от геолого-технических характеристик скважины и пласта. Данный способ интервального многостадийного гидравлического разрыва пласта (ГРП) позволяет использовать селективную перфорацию, когда за одну спуско-подъемную операцию применяют от двух и более перфосистем.

Таким образом, в зависимости от геолого-технических характеристик скважины и продуктивного пласта заявленный способ позволяет:

- под каждую стадию ГРП заранее выбирать наиболее перспективные участки пласта по данным геофизических исследований скважины (ГИС) под перфорацию и располагать перфоратор в выбранном интервале;

- производить оптимальное количество стадий ГРП горизонтального ствола скважины в перспективных интервалах продуктивного пласта;

- выполнять высокоскоростные ГРП с расходом закачки технологической жидкости и проппанта от 6 до 15 кубических метров в минуту;

- закачивать большое количество проппанта и технологической жидкости (многотонные ГРП).

Экспериментальные исследования с использованием данного способа показали простоту и надежность способа интервального многостадийного гидравлического разрыва пласта (ГРП) в нефтяных и газовых скважинах.

Таким образом, технический результат, достигаемый с использованием заявленного изобретения, обеспечивает:

- исключение использования дорогостоящего оборудования;

- сокращение количества спуско-подъемных операций ГНКТ;

- выполнение высокоскоростного ГРП;

- минимальное количество времени на разбуривание композитных пакер-пробок и продавочных шаров;

- обеспечение беспрепятственного доступа используемому оборудованию, проппанту и технологической жидкости по всему стволу горизонтального участка скважины.

Похожие патенты RU2634134C1

название год авторы номер документа
СПОСОБ ПОДГОТОВКИ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН С ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ К ЭКСПЛУАТАЦИИ 2021
  • Гимаев Артур Фаатович
RU2759109C1
Способ проведения многостадийного гидравлического разрыва пласта в скважине с горизонтальным окончанием 2019
  • Шамсутдинов Николай Маратович
  • Битюков Владимир Валерьевич
  • Сергеев Сергей Юрьевич
  • Григорьев Андрей Петрович
  • Леонтьев Дмитрий Сергеевич
  • Овчинников Василий Павлович
RU2732891C1
Способ подготовки скважины к гидравлическому разрыву пласта в нефтяных и газовых скважинах 2020
  • Постнов Тимур Андреевич
  • Постнов Антон Андреевич
  • Семенов Мансур Магомедович
RU2747033C1
Способ проведения повторного многостадийного гидроразрыва пласта в скважине с горизонтальным окончанием с применением обсадной колонны меньшего диаметра 2021
  • Шамсутдинов Николай Маратович
  • Мильков Александр Юрьевич
  • Леонтьев Дмитрий Сергеевич
  • Овчинников Василий Павлович
  • Елшин Александр Сергеевич
  • Славский Антон Игоревич
  • Чемодуров Игорь Николаевич
  • Флоринский Руслан Александрович
RU2775112C1
СПОСОБ ЗАКАНЧИВАНИЯ СКВАЖИНЫ С ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ С ПОСЛЕДУЮЩИМ ПРОВЕДЕНИЕМ МНОГОСТАДИЙНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА 2021
  • Шамсутдинов Николай Маратович
  • Мильков Александр Юрьевич
  • Елшин Александр Сергеевич
  • Леонтьев Дмитрий Сергеевич
RU2775628C1
СПОСОБ ИНИЦИАЦИИ ТРЕЩИН ГИДРОРАЗРЫВА В ПРИСКВАЖИННОЙ ЗОНЕ ГЕОЛОГИЧЕСКОГО ПЛАСТА 2020
  • Чертов Максим Андреевич
  • Виллберг Дин
RU2733840C1
СПОСОБ ПОИНТЕРВАЛЬНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА КАРБОНАТНОГО ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ С ПОДОШВЕННОЙ ВОДОЙ 2014
  • Махмутов Ильгизар Хасимович
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
  • Гирфанов Ильдар Ильясович
  • Мансуров Айдар Ульфатович
RU2558058C1
СПОСОБ ПРОВЕДЕНИЯ ПОВТОРНОГО МНОГОСТАДИЙНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА С ОТКЛОНЯЮЩИМИ ПАЧКАМИ В ГОРИЗОНТАЛЬНОЙ СКВАЖИНЕ 2022
  • Мингазов Артур Фаилович
  • Самойлов Иван Сергеевич
  • Меньшенин Михаил Михайлович
  • Соколов Дмитрий Сергеевич
RU2808396C1
СПОСОБ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В НАКЛОННО НАПРАВЛЕННОМ СТВОЛЕ СКВАЖИНЫ 2015
  • Насыбуллин Арслан Валерьевич
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
RU2601881C1
Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины 2017
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
  • Мансуров Айдар Ульфатович
RU2655309C1

Иллюстрации к изобретению RU 2 634 134 C1

Реферат патента 2017 года СПОСОБ ИНТЕРВАЛЬНОГО МНОГОСТАДИЙНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИНАХ

Изобретение относится к способам разработки нефтяных и газовых месторождений горизонтальными скважинами и может быть применено для реализации интервального многостадийного гидравлического разрыва пласта (ГРП). Способ включает интервальный спуск кумулятивного перфоратора с использованием ГНКТ (гибкой насосно-компрессорной трубы), выполнение перфорации в горизонтальных участках эксплуатационной колонны, цементного кольцевого пространства, горной породы (продуктивного пласта), закачивание жидкости разрыва и проппанта в продуктивный пласт для формирования и закрепления трещин после гидравлического разрыва, интервальную установку в горизонтальных участках эксплуатационной колонны пакеров. Причем на первой стадии ГРП производят спуск кумулятивного перфоратора без пакера, а для подготовки последующих стадий ГРП используют кумулятивный перфоратор с пакером. При этом в качестве пакера используют установленную впереди перфоратора с посадочной камерой композитную взрывную пакер-пробку, выдерживающую перепад давления не менее 700 атм. При этом пакер-пробку связывают с перфоратором соединительным устройством, а для инициирования композитной взрывной пакер-пробки и кумулятивного перфоратора используют пропущенный через ГНКТ кабель-канал (геофизический кабель), который передает различные кодированные электрические импульсы. Причем один импульс инициирует пороховой заряд для установки и отсоединения композитной взрывной пакер-пробки от кумулятивного перфоратора, а другой импульс инициирует сам кумулятивный перфоратор. При этом установку пакер-пробки и перфорацию производят за одну спуско-подъемную операцию. Технический результат заключается в повышении технологичности способа. 4 з.п. ф-лы, 21 ил.

Формула изобретения RU 2 634 134 C1

1. Способ интервального многостадийного гидравлического разрыва пласта (ГРП) в нефтяных и газовых скважинах, включающий интервальный спуск кумулятивного перфоратора с использованием ГНКТ (гибкой насосно-компрессорной трубы), выполнение перфорации в горизонтальных участках эксплуатационной колонны, цементного кольцевого пространства, горной породы (продуктивного пласта), закачивание жидкости разрыва и проппанта в продуктивный пласт для формирования и закрепления трещин после гидравлического разрыва, интервальную установку в горизонтальных участках эксплуатационной колонны пакеров, отличающийся тем, что на первой стадии ГРП производят спуск кумулятивного перфоратора без пакера, а для подготовки последующих стадий ГРП используют кумулятивный перфоратор с пакером, причем в качестве пакера используют установленную впереди перфоратора с посадочной камерой композитную взрывную пакер-пробку, выдерживающую перепад давления не менее 700 атмосфер, при этом пакер-пробку связывают с перфоратором соединительным устройством, а для инициирования композитной взрывной пакер-пробки и кумулятивного перфоратора используют пропущенный через ГНКТ кабель-канал (геофизический кабель), который передает различные кодированные электрические импульсы, причем один импульс инициирует пороховой заряд для установки и отсоединения композитной взрывной пакер-пробки от кумулятивного перфоратора, а другой импульс инициирует сам кумулятивный перфоратор, при этом установку пакер-пробки и перфорацию производят за одну спуско-подъемную операцию.

2. Способ по п.1, отличающийся тем, что проппант на всех стадиях ГРП продавливают с помощью, например полиуретанового продавочного шара.

3. Способ по п.1, отличающийся тем, что выполняют продвижение по стволу скважины кумулятивного перфоратора с композитной взрывной пакер-пробкой, а их центрирование осуществляют за счет использования двух центраторов на роликах (катках), расположенных на подвеске ГНКТ с обеих сторон перфоратора.

4. Способ по п.1, отличающийся тем, что отсоединение пакер-пробки от перфоратора осуществляют усилием на разрыв и сломом соединительных шпилек соединительного штока за счет избыточного давления образованного в посадочной камере в результате горения порохового заряда.

5. Способ по п.1, отличающийся тем, что обеспечивают использование равнопроходных диаметров компоновок под ГРП и хвостовика.

Документы, цитированные в отчете о поиске Патент 2017 года RU2634134C1

СПОСОБ ПОИНТЕРВАЛЬНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА КАРБОНАТНОГО ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ С ПОДОШВЕННОЙ ВОДОЙ 2014
  • Махмутов Ильгизар Хасимович
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
  • Гирфанов Ильдар Ильясович
  • Мансуров Айдар Ульфатович
RU2558058C1
СПОСОБ СОЗДАНИЯ ДРЕНАЖНОЙ СИСТЕМЫ ПРОДУКТИВНОГО ПЛАСТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Иванников Владимир Иванович
  • Иванников Иван Владимирович
RU2278960C2
СПОСОБ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ГОРИЗОНТАЛЬНОГО СТВОЛА СКВАЖИНЫ 2007
  • Шульев Юрий Викторович
  • Косяк Анатолий Юрьевич
  • Билинчук Александр Васильевич
  • Бекетов Сергей Борисович
RU2362010C1
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ 2014
  • Махмутов Ильгизар Хасимович
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
  • Салимов Вячеслав Гайнанович
RU2547892C1
СПОСОБ ВОССТАНОВЛЕНИЯ ПРОХОДИМОСТИ ОТКРЫТОГО ГОРИЗОНТАЛЬНОГО СТВОЛА СКВАЖИНЫ 2014
  • Махмутов Ильгизар Хасимович
  • Зиятдинов Радик Зяузятович
  • Тарасова Римма Назиповна
  • Уразгильдин Раис Нафисович
RU2564314C1
КОМПОНОВКА И СПОСОБ ИНТЕНСИФИКАЦИИ ПРИТОКА ГИДРОРАЗРЫВОМ ПЛАСТА КОЛЛЕКТОРА В НЕСКОЛЬКИХ ЗОНАХ С ИСПОЛЬЗОВАНИЕМ АВТОНОМНЫХ БЛОКОВ В СИСТЕМАХ ТРУБ 2011
  • Толман Рэнди К.
  • Энтчев Павлин Б.
  • Анхелес Боса Ренсо М.
  • Петри Деннис Х.
  • Сирлс Кевин Х.
  • Эль-Рабаа Абдель Вадуд Мохаммед
RU2571460C2
US 2011162849 A1, 07.07.2011.

RU 2 634 134 C1

Авторы

Гимаев Артур Фаатович

Ереняков Олег Федорович

Даты

2017-10-24Публикация

2016-06-29Подача