Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов тревоги на удаленный пункт контроля.
Известны автономные сигнально-пусковые системы пожаротушения (авт. свид. СССР №1261676, 1277159; патенты РФ №2022250, 2024064, 2115451, 2138856, 2170951, 2175779, 2234735, 2242921, 2254614, 2275688, 2344859, 2355037, 2434297, 2520429; патенты США №3786461, 4661320; патент Великобритании №2324398; патенты ЕР №0360126, 0657728 и др.)
Из известных систем наиболее близкой к предлагаемой является «Автономная сигнально-пусковая система пожаротушения» (патент РФ №2.520.429, G08В 17/00, 2013), которая и выбрана в качестве прототипа.
Известная система обеспечивает подавление ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам за счет корреляционной обработки канальных напряжений. При этом используется замечательное свойство корреляционной функции сложных сигналов с фазовой манипуляцией.
Однако, кроме зеркальных и комбинационных каналов, существуют и другие дополнительные каналы приема, такие как интермодуляционные каналы и каналы прямого прохождения.
Наличие ложных сигналов (помех), принимаемых по каналу прямого прохождения и интермодуляционным каналам, приводит к снижению избирательности и помехоустойчивости приемника.
Технической задачей изобретения является повышение избирательности и помехоустойчивости приемника путем подавления ложных сигналов (помех), принимаемых по каналу прямого прохождения и интермодуляционным каналам.
Поставленная задача решается тем, что автономная сигнально-пусковая система пожаротушения, содержащая, в соответствии с ближайшим аналогом, последовательно соединенные тепловой пускатель, источник тока с пиротехническим активатором и реле времени, которое соединено с сигнальным устройством через нормально замкнутый контакт и дополнительно соединено с исполнительным устройством через нормально разомкнутый контакт, при этом тепловой пускатель и источник тока с пиротехническим активатором конструктивно объединены и заключены в корпусе, тепловой пускатель выполнен в виде подпружиненного штока, установленного с возможностью поступательного перемещения и взаимодействия с пиротехническим активатором источника тока, причем один из концевых участков подпружиненного штока расположен с возможностью выступания из корпуса и снабжен фиксатором, выполненным из материала с термомеханической памятью формы, источник тока включает оболочку с размещенной в ней с возможностью контакта с пиротехническим активатором твердотельной шашкой из твердосолевой бессепаратной электрохимической композиции на основе литиевого сплава и дисульфида железа, сигнальное устройство выполнено в виде передатчика сигнала на удаленный приемник, при этом передатчик сигналов выполнен в виде последовательно включенных задающего генератора, n - отводной линии задержки, фазоинверторов, включенных в m - отводы n - отводной линии задержки, сумматора, (n+1)-й вход которого соединен с выходом задающего генератора, усилителя мощности и передающей антенны, а приемник выполнен в виде последовательно включенных приемной антенны и усилителя высокой частоты, последовательно включенных генератора пилообразного напряжения, первого гетеродина, первого смесителя, первого усилителя промежуточной частоты, коррелятора, второго порогового блока, второго ключа, второй вход которого соединен с выходом первого усилителя промежуточной частоты, удвоителя фазы, второго анализатора спектра, блока сравнения, второй вход которого через первый анализатор спектра соединен с выходом второго ключа, первого порогового блока, второй вход которого через первую линии задержки соединен с его выходом, первого ключа, второй вход которого соединен с выходом второго ключа, фазового детектора, второй вход которого через вторую линию задержки соединен с выходом первого ключа, и блока регистрации, к выходу генератора пилообразного напряжения последовательно подключены второй гетеродин, второй смеситель и второй усилитель промежуточной частоты, выход которого соединен с вторым входом коррелятора, управляющий вход генератора пилообразного напряжения соединен с выходом первого порогового блока, частоты ωг1, ωг2 первого и второго гетеродинов разнесены на удвоенное значение промежуточной частоты
выбраны симметричными относительно несущей частоты ωс принимаемого сигнала
и перестраиваются синхронно, отличается от ближайшего аналога тем, что она снабжена узкополосным фильтром, двумя полосовыми фильтрами, тремя фазоинверторами и тремя сумматорами, причем к выходу усилителя высокой частоты последовательно подключены узкополосный фильтр, первый фазоинвертор, первый сумматор, второй вход которого соединен с выходом усилителя высокой частоты, первый полосовой фильтр, второй фазоинвертор, второй сумматор, второй вход которого соединен с выходом первого сумматора, второй полосовой фильтр, третий фазоинвертор и третий сумматор, второй вход которого соединен с выходом второго сумматора, а выход соединен с вторым входом первого и второго смесителей.
Структурная схема автономной сигнально-пусковой системы пожаротушения представлена на фиг. 1. График изменения напряжения на выходных контактах источника тока показан на фиг. 2. Конструктивно объединенные в едином корпусе источник тока с пиротехническим активатором и тепловым пускателем электрического действия изображены на фиг. 3. Конструктивно объединенные в едином корпусе источник тока с пиротехническим активатором и тепловым пускателем ударного действия изображены на фиг. 4. Структурная схема передатчика представлена на фиг. 5. Структурная схема приемника представлена на фиг. 6. Частотные диаграммы, иллюстрирующие образование дополнительных каналов приема, изображены на фиг. 7, 8 и 9.
Автономная сигнально-пусковая система пожаротушения содержит последовательно соединенные тепловой пускатель 1, источник тока 2 с пиротехническим активатором 3 и реле времени 4, которое соединено с сигнальным устройством 5 через нормально замкнутый контакт и дополнительно соединено с исполнительным устройством 6 через нормально разомкнутый контакт.
Тепловой пускатель 1 и источник тока 2 с пиротехническим активатором 3 конструктивно объединены и заключены в едином корпусе 7, выполненном из электроизоляционного материала. В качестве электроизоляционного (не электропроводного) и немагнитного материала при изготовлении элементов системы могут быть использованы пластические материалы, материалы на основе стекло- или органоволокна. Тепловой пускатель 1 выполнен в виде цилиндрического штока 8, установленного в корпусе 7. Шток 8 оснащен приводом его поступательного перемещения, который представляет собой пружину 9 сжатия, установленную коаксиально на штоке 8 в его средней части. Концевой участок 10 подпружиненного штока 8 расположен с возможностью выступания из корпуса 7 и имеет фигурную проточку для взаимодействия с термочувствительным фиксатором 11, выполненным в форме скобы диаметром около 20 мм из материала с термомеханической памятью формы, например никелида титана.
Тепловой пускатель 1 имеет возможность взаимодействовать с пиротехническим активатором 3 источника тока 2 двумя различными способами, отличающимися их конструктивными воплощениями.
Тепловой пускатель 1 электротехнического действия, изображенный на фиг. 3, снабжен соленоидом 12 с центральным осевым каналом 13, выводы 14 которого электрически соединены с пиротехническим активатором 3. При этом пиротехнический активатор 3 выполнен в виде мостика накаливания 15, электрически соединенного с выводами 14, и нанесенной на него навеской инициирующего вещества 16. Кроме того, второй концевой участок 17 подпружиненного штока 8 намагничен (на чертежах соответствующие полюсы постоянного магнита обозначены буквами S и N) и установлен с возможностью перемещения внутри центрального осевого канала 13 соленоида 12.
Тепловой пускатель 1 ударного действия, изображенный на фиг. 4, характеризуется тем, что второй концевой участок 17 его подпружиненного штока 8, обращенный в сторону пиротехнического активатора 3, снабжен коническим бойком 18. При этом пиротехнический активатор 3 выполнен в виде воспламенителя и навески инициирующего вещества 16 и капсюля 19. Источник тока 2 является устройством питания постоянной готовности на основе теплового химического источника тока резервного типа, который представляет собой конструкцию в герметической оболочке 20 твердотельной шашкой из твердосолевой бессепаратной электрохимической композиции на основе литиевого сплава и дисульфида железа. При этом твердотельные шашки 21 непосредственно контактируют с навеской инициирующего вещества 16 пиротехнического активатора 3, который также, преимущественно, размещен в герметической оболочке 20. Источник тока 2 имеет электрические выводы 22, которые нормально соединены с входными контактами реле времени 4.
Реле времени 4 представляет собой электронный двухпозиционный временной переключатель, который через нормально замкнутый выходной контакт электрически соединен с сигнальным устройством 5 и одновременно через нормально разомкнутый выходной контакт электрически соединен с исполнительным устройством 6. Исполнительное устройство 6 представляет собой, преимущественно, генератор огнетушащего аэрозоля с электрическим средством запуска, например пиропатроном, который собственно и подключен к нормально разомкнутому контакту реле времени 4. Сигнальное устройство 5 представляет собой, преимущественно, передатчик радиосигнала на удаленный приемник.
Передатчик содержит последовательно включенные задающий генератор 23, m - отводную линию задержки 24.i (i=1, 2, …, n), фазоинвертора 25.j (j=1, 2, …, m), включенный в m - отводы n - отводной линии задержки 24.i, сумматор 26, (n+1)-й вход которого соединен с выходом задающего генератора 23, усилитель 27 мощности и передающую антенну 28.
Приемник содержит последовательно включенные приемную антенну 29, усилитель 30 высокой частоты, узкополосной фильтр 52, первый фазовый инвертор 53, первый сумматор 54, второй вход которого соединен с выходом усилителя 30 высокой частоты, первый полосовой фильтр 55, второй фазоинвертор 56, второй сумматор 57, второй вход которого соединен с выходом первого сумматора 54, второй полосовой фильтр 58, третий фазоинвертор 59, третий сумматор 60, второй вход которого соединен с выходом второго сумматора 57, первый смеситель 31, второй вход которого через первый гетеродин 33 соединен с выходом генератора 32 пилообразного напряжения, первый усилитель 34 промежуточной частоты, коррелятор 49, второй пороговый блок 50, второй ключ 51, второй вход которого соединен с выходом первого усилителя 34 промежуточной частоты, удвоитель 37 фазы, второй анализатор 38 спектра, блок 39 сравнения, второй вход которого через первый анализатор 36 спектра соединен с выходом второго ключа 51, первый пороговый блок 40, второй вход которого через первую линию задержки 41 соединен с его выходом, первый ключ 42, второй вход которого соединен с выходом второго ключа 51, фазовый детектор 43, второй вход которого через вторую линию задержки 44 соединен с выходом первого ключа 42, и блок 45 регистрации. К выходу генератора 32 пилообразного напряжения последовательно подключены второй гетеродин 46, второй смеситель 47, второй вход которого соединен с выходом третьего сумматора 60, и второй усилитель 48 промежуточной частоты, выход которого соединен с вторым входом коррелятора 49. Управляющий вход генератора 32 пилообразного напряжения соединен с выходом первого порогового блока 40.
Анализаторы 36 и 38 спектра, удвоитель 37 фазы, блок 39 сравнения, первый пороговый блок 46 и первая линия задержки 41 образуют обнаружитель (селектор) 35 фазоманипулированного (ФМн) сигнала.
Автономная сигнально-пусковая система пожаротушения функционирует следующим образом.
Система эффективна при использовании ее, преимущественно, на удаленных, труднодоступных и редко посещаемых объектах. Основные элементы системы доставляются на объект в собранном виде и во взведенном положении, устанавливаются стационарно в месте наиболее вероятного возникновения пожара. После монтажа системы пожаротушения снимаются все предохранители, в том числе и со штока 8 (на чертеже не показан), и она переводится в дежурный режим.
При возникновении пожара и повышении температуры в зоне расположения термочувствительного фиксатора 11 до порога срабатывания (72°С) в его материале происходит мартенситное превращение, сопровождающееся восстановлением предварительно заданной формы скобы, последняя разжимается, восстанавливая свою форму, и высвобождает концевой участок 16 штока 8. Шток 8 под воздействием пружины 9 привода (его поступательного движения) начинается движение вниз. Вместе со штоком 8 перемещается и его второй концевой участок 17. Далее возможна реализация схемы пиротехнического активатора 3 с тепловым пускателем 1 электрического действия или пиротехнического активатора 3 с тепловым пускателем 1 ударного действия.
В первом случае подпружиненный шток 8 взаимодействует с пиротехническим активатором 3 посредством намагниченного второго концевого участка 17, который перемещается внутрь центрального осевого канала 13 соленоида 12 и вырабатывает импульс тока, передающийся через электрические выводы 14 на мостик накаливания 15 пиротехнического активатора 3. Необходимая величина электрического импульса составляет 0,5-1,0 A, а длительность - 1-10 мс.
Во втором случае подпружиненный шток 8 взаимодействует с пиротехническим активатором 3 посредством конического бойка 18, который ударяет по капсулю 19.
В обоих случаях происходит воспламенение навески инициирующего вещества 16, которое за короткое время расплавляет твердосолевую электрохимическую композицию твердотельной шашки и переводит источник тока 2 в состояние генерирования тока заданной величины.
Как показывает график (фиг. 2), короткое время активации (t6≤1с) позволяет использовать источник тока 2 в средствах и устройствах с малым временем приведения в рабочее состояние. В течении периода времени t1 происходит включение и функционирование сигнального устройства 5. Длительность периода времени t1 обеспечивается реле времени 4, задается при монтаже системы пожаротушения и зависит от регламента и плана аварийных действий на охраняемом объекте. В течение указанного периода времени обязательно сохраняется нормально замкнутый электрический контакт выхода реле времени 4 с сигнальным устройством 5, которое обеспечивает передачу радиосигнала на удаленный приемник.
Для этого задающим генератором 23 формируется радиоимпульс
Uc(t)=Vc×Cos(ωct+ϕс), 0≤t≤τЭ,
где Vc, ωс, ϕс, τЭ - амплитуда, несущая частота, начальная фаза и длительность радиоимпульса.
Сформированный радиоимпульс с выхода задающего генератора 23 поступает на вход многоотводной линии задержки 24.i (i=1, 2, …, n) и на (n+1)-й вход сумматора 26. В многоотводной линии задержки 24.i время задержки между ближайшими соседними отводами равно длительности радиоимпульса τЭ (τзi=τЭ, i=1, 2....n). В некоторых отводах линии задержки включены фазоинверторы 25.j (j=1, 2, …, m), обеспечивающие на своих выходах поворот фазы на 180° (в соответствии с идентификационным кодом M(t) объекта пожарной безопасности). На выходе сумматора 26 формируется сложный сигнал с фазовой манипуляцией (ФМн) в виде алгебраической суммы радиоимпульсов со всех отводов линии задержки 24.i (i=1, 2, …, n) и с выхода задающего генератора 23
U1(t)=Vc×Cos[ωct+ϕк(t)+ϕс], 0≤t≤Tc,
где ϕк(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), причем ϕк(t)=const при кτэ<t<(к+1)τэ и может изменяться скачком при t=кτэ, то есть на границах между элементарными посылками (радиоимпульсами) (к=1, 2, …, n);
τэ, n - длительность и количество элементарных посылок (радиоимпульсов), из которых составлен сигнал длительностью Тс (Тс=τэ⋅n).
Данный сигнал после усиления в усилителе 27 мощности поступает в передающую антенну 28, излучается ею в эфир, улавливается приемной антенной 29, установленной на пункте контроля, и через усилитель 30 высокой частоты и сумматоры 54, 57, 60, у которых работает только одно плечо, поступает на первые входы первого 31 и второго 47 смесителей, на вторые входы которых подаются напряжения первого 33 и второго 46 гетеродинов линейно-изменяющейся частоты соответственно:
Uг1(t)=Vг1×Cos(ωг1t+πγt2+ϕг1),
Uг2(t)=Vг2×Cos(ωг2t+πγt2+ϕг2), 0≤t≤Тп,
где γ=Df/Тп - скорость изменения частот гетеродинов 33 и 46 в заданном диапазоне частот Df;
Тп - период перестройки.
При этом частоты ωг1 и ωг2 гетеродинов 33 и 46 разнесены на удвоенное значение промежуточной частоты 2ωпр (фиг. 7)
ωг2-ωг1=2ωпр,
выбраны симметричными относительно несущей частоты ωс принимаемого сигнала
ωс-ωг1=ωг2-ωс=ωпр и перестраиваются синхронно.
Это обстоятельство приводит к удвоению числа дополнительных каналов приема, но создает благоприятные условия для их подавления за счет корреляционной обработки канальных напряжений.
Следует отметить, что поиск сложных ФМн-сигналов в заданном диапазоне частот Df осуществляется с помощью генератора 32 пилообразного напряжения, который по линейному закону изменяет частоты ωг1 и ωг2 гетеродинов 33 и 46.
На выходе смесителей 31 и 47 образуется напряжение комбинационных частот. Усилителями 34 и 48 выделяются напряжения промежуточной частоты:
Uпр1(t)=Vпр1⋅×Cos[ωпрt+ϕк(t)-πγt2+ϕпр1],
Uпр2(t)=Vпр2⋅×Cos[ωпрt-ϕк(t)+πγt2+ϕпр2], 0≤t≤Tc,
где Vпр1=1/2Vc⋅×Vг1;
Vпр2=1/2Vc⋅×Vг2;
ωпр=ωс-ωг1=ωг2-ωс - промежуточная частота;
ϕпр1=ϕс-ϕг1; ϕпр=ϕг2-ϕс,
которые представляют собой сложные сигналы с комбинированной фазовой манипуляцией и линейной частотной модуляцией (ФМн-ЛЧМ).
Эти напряжения поступают на два входа коррелятора 49, на выходе которого формируется напряжение V, пропорциональное корреляционной функции R(τ), которое сравнивают с пороговым напряжением Vпор1 в пороговом блоке 50. Пороговый уровень Vпор1 превышается только при максимальном напряжении Vmax коррелятора 49 (Vmax>Vпор1).
Так как канальные напряжения Uпр1(t) и Uпр2(t) образованы одним и тем же полезным ФМн-сигналом, принимаемым по основному каналу на частоте ωс (фиг. 7), то между указанными канальными напряжениями существует сильная корреляционная связь. Выходное напряжение коррелятора достигает максимального значения Vmax и превышает пороговый уровень Vпор1 в пороговом блоке 56 (Vmax>Vпор1).
Следует также отметить, что корреляционная функция R(τ) сложных ФМн-сигналов обладает замечательным свойством: она имеет ярко выраженный главный лепесток и сравнительно низкий уровень боковых лепестков.
При превышении порогового уровня Vпор1 в пороговом блоке 50 формируется постоянное напряжение, которое поступает на управляющий вход ключа 51 и открывает его. В исходном состоянии ключ 51 всегда закрыт. При этом напряжение Uпр1(t) с выхода первого усилителя 34 промежуточной частоты через открытый ключ 51 поступает на вход обнаружителя (селектора) 35 ФМн-сигнала, состоящего из удвоителя 37 фазы, анализаторов 36 и 38 спектра, блока 39 сравнения, порогового блока 40 и первой линии задержки 41.
На выходе удвоителя 37 фазы образуется напряжение
U2(t)=V2×Cos(2ωпрt-2πγt2+2ϕпр1), 0≤t≤Tc,
где V2=1/2Vпр1, в котором манипуляция фазы уже отсутствует.
Ширина спектра Δf2 второй гармоники сигнала определяется длительностью сигнала Δf2=1/Тс, тогда как ширина спектра Δfc входного ФМн-сигнала определяется длительностью τэ его элементарных посылок Δf2=1/τэ, т.е. ширина спектра второй гармоники сигнала в n раз меньше ширины спектра входного сигнала Δfc/Δf2=n.
Следовательно, при удвоении фазы ФМн-сигнала его ширина спектра «сворачивается» в n раз. Это обстоятельство позволяет обнаружить и отселектировать ФМн-сигнал даже тогда, когда его мощность на входе приемника меньше мощности шумов и помех.
Ширина спектра Δfc входного ФМн-сигнала измеряется анализатором 36 спектра, а ширина спектра Δf2 второй гармоники сигнала - с помощью анализатора 38 спектра. Напряжения V1 и V2, пропорциональные Δfc и Δf2 соответственно, с выходов анализаторов 36 и 38 спектра поступают на два входа блока 39 сравнения. Так как V1>>V2, то на выходе блока 39 сравнения образуется положительное напряжение, которое превышает пороговый уровень Vпор2 в пороговом блоке 40. Пороговый уровень Vпор2 выбирается таким, чтобы его не превышали случайные помехи. При превышении порогового напряжения Vпор2 в пороговом блоке 40 формируется постоянное напряжение, которое поступает на управляющий вход ключа 42, открывая его, на вход линии 41 задержки и на управляющий вход генератора 32 пилообразного напряжения, выключая его. Ключ 42 в исходном состоянии всегда закрыт.
При прекращении перестройки частот гетеродинов 33 и 46 усилителями 34 и 48 промежуточной частоты выделяются следующие напряжения
Uпр3(t)=Vпр1×Cos[2ωпрt+ϕк(t)+ϕпр1],
Uпр4(t)=Vпр2×Cos[ωпрt-ϕк(t)+ϕпр2], 0≤t≤Tc.
на выходе удвоителя 37 фазы в этом случае выделяется гармоническое напряжение
U3(t)=V2×Cos(2ωпрt+2ϕпр1), 0≤t≤Тс.
Напряжение Uпр3(t) с выхода первого усилителя 34 промежуточной частоты через открытые ключи 51 и 42 поступает на два входа фазового детектора 43 непосредственно и через линию 44 задержки, время задержки τз которой выбирается равной длительности τэ элементарных посылок (τз=τэ). При этом опорным напряжением, необходимым для синхронного детектирования принимаемого ФМн-сигнала, для каждой последующей посылки служит предыдущая посылка. На выходе фазового детектора 43 образуется низкочастотное напряжение
Uн(t)=Vн×Cos ϕк(t), 0≤t≤Тс,
где Vн=1/2Vпр12,
пропорциональное модулирующему коду M(t) за исключением первой элементарной посылки.
Фазовый детектор 43 и линия задержки 44 образуют автокорреляционный демодулятор ФМн-сигналов, который свободен от явления «обратной работы», присущей известным демодуляторам ФМн-сигналов (схемы А.А. Пистолькорса, В.И. Сидорова, Г.А. Травина, Д.Ф. Костоса).
Низкочастотное напряжение Uн(t) фиксируется блоком 45 регистрации.
Несущая частота ωс и модулирующий код M(t) являются идентификационными признаками объекта пожарной безопасности, где возник пожар. По этим признакам на пункте контроля принимается решение о месте возникновения пожара и мерах по его ликвидации.
Время задержки τ1 линии задержки 41 выбирают таким образом, чтобы можно было зафиксировать и проанализировать низкочастотное напряжение Uн(t). Для надежной передачи сигнала тревоги достаточно пятнадцатисекундного импульса (t1≤15с). В течение периода времени t2 происходит подключение и запуск генератора огнетушащего аэрозоля исполнительного устройства 6. Указанное подключение обеспечивает реле времени 4, по команде которого по окончании временного периода t1 осуществляется замыкание нормально разомкнутого выходного контакта реле времени 4 с электрическим средством запуска, например, пирапатроном генератора огнетушащего аэрозоля. После срабатывания пиропатрона генератора огнетушащего аэрозоля последний функционирует автономно и в электропитании от источника тока 2 не нуждается. Для надежного запуска генератора огнетушащего аэрозоля исполнительного устройства 6 достаточно пятисекундного импульса (t2=2-5с).
По истечении времени τ1 напряжение с выхода порогового блока 40 через линию задержки 41 поступает на вход сброса порогового блока 40 и сбрасывает его содержимое на нулевое значение. При этом ключ 42 закрывается, а генератор 32 пилообразного напряжения включается, т.е. они переводятся в свои исходные состояния.
При обнаружении следующего ФМн-сигнала на другой несущей частоте и с другим модулирующим кодом работа приемника происходит аналогичным образом.
Указанные ФМн-сигналы обладают высокой помехоустойчивостью, энергетической и структурной скрытностью.
Описанная выше работа приемника соответствует случаю приема полезных ФМн-сигналов по основному каналу на частоте ωс (фиг. 7).
Если ложный сигнал (помеха) принимается по первому зеркальному каналу на частоте ωз1
Uз1(t)=Vзl×Cos(ωз1t+ϕз1), 0≤t≤Tз,
то на выходе смесителей 31 и 47 образуются следующие напряжения соответственно:
Uпр5(t)=Vпр5×Cos(ωпрt-πγt2+ϕпр5),
Uпр6(t)=Vпр6×Cos(3ωпрt+πγt2+ϕпр6), 0≤t≤Тз1,
где Vпр5=1/2Vз1×Vг1; Vпр6=1/2Vз1×Vг2;
ωпр=ωг1-ωз1 - промежуточная частота;
3ωпр=ωг2-ωз1 - утроенное значение промежуточной частоты;
ϕпр5=ϕг1-ϕз1; ϕпр6=ϕг2-ϕз1.
Однако только напряжение Uпр5(t) поступает в полосу пропускания первого усилителя 34 промежуточной частоты и на первый вход коррелятора 49. Выходное напряжение коррелятора 49 равно нулю, ключ 51 не открывается и ложный сигнал (помеха), принимаемый по первому зеркальному каналу на частоте ωз1, подавляется.
Если ложный сигнал (помеха) принимается по второму зеркальному каналу на частоте ωз2
Uз2(t)=Vз2×Cos(ωз2t+ϕз2), 0≤t≤Тз2,
то на выходе смесителей 31 и 48 образуется следующие напряжения соответственно:
Uпр7(t)=Vпр7×Cos(3ωпрt-πϕt2+ϕпр7),
Uпр8(t)=Vпр8×Cos(ωпрt+πγt2+ϕпр8), 0≤t≤Тз2,
где Vпр7=1/2Vз2×Vг1;
Vпр8=1/2Vз2×Vг2;
3ωпр=ωз2-ωг1 - утроенное значение промежуточной частоты;
ωпр=ωз2-ωг2 - промежуточная частота;
ϕпр7=ϕз2-ϕг1; ϕпр8=ϕз2-ϕг2.
Однако только напряжение Uпр8(t) попадает в полосу пропускания второго усилителя 48 промежуточной частоты и на второй вход коррелятора 49. Выходное напряжение коррелятора 49 также равно нулю, ключ 51 не открывается и ложный сигнал (помеха), принимаемый по второму зеркальному каналу на частоте ωз2, подавляется.
По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по первому комбинационному каналу на частоте ωк1, или по второму комбинационному каналу на частоте ωг2, или по любому другому комбинационному каналу.
Если ложные сигналы (помехи) одновременно принимаются по первому ωз1 и второму ωз2 зеркальным каналам, то в полосы пропускания усилителей 34 и 48 промежуточной частоты и на два входа коррелятора 49 попадают напряжения Uпр5(t) и Uпр8(t) соответственно. Но ключ 51 в этом случае не открывается. Это объясняется тем, что два ложных сигнала Uз1(t) и Uз2(t) принимаются на разных частотах ωз1 и ωз2, между образованными канальными напряжениями Uпр5(t) и Uпр8(t) существует слабая корреляционная связь, выходное напряжение коррелятора 49 не достигает максимального значения и не превышает порогового уровня Vпор1 в пороговом блоке 50. Ключ 51 не открывается и ложные сигналы (помехи), одновременно по первому ωз1 и второму ωз2 зеркальным каналам, подавляются.
По аналогичной причине подавляются и ложные сигналы (помехи), одновременно принимаемые по первому ωк1 и второму ωк2 комбинационным или по двум другим комбинационным каналам.
Если ложный сигнал (помеха) принимается по каналу прямого прохождения на частоте ωпр
Uп(t)=Vп⋅×Cos(ωпрt+ϕп), 0≤t≤Тп,
то с выхода усилителя 30 высокой частоты он поступает на первый вход первого сумматора 54, выделяется узкочастотным фильтром 52, частота настройки ωн которого выбирается равной ωн=ωпр, и поступает на вход первого фазоинвентора 53, на выходе которого образуется напряжение
Uп1(t)=-Vп×Cos(ωпрt+ϕп), 0≤t≤Тп,
которое поступает на второй вход первого сумматора 54. Напряжения Uп(t) и Uп1(t), поступающие на два сумматора 54, на его выходе компенсируются.
Следовательно, ложный сигнал (помеха), принимаемый по каналу прямого прохождения на частоте ωп=ωпр5 подавляется с помощью фильтра-пробки, состоящего из узкополосного фильтра 52, первого фазоинвертора 53, первого сумматора 54 и реализующего фазокомпенсационный метод.
Если два мощных сигнала на частотах ω1 и ω2 или более двух сигналов попадают в полосу частот Δωп1, расположенную «слева» от полосы пропускания Δωп приемника, то их взаимодействие на нелинейных элементах приводит к образованию интермодуляционных составляющих, которые попадают в полосу пропускания Δωп приемника. При этом частота настройки ωн1 и полоса частот Δωп1 первого полосового фильтра 55 выбираются следующим образом (фиг. 8):
ωн1=(ω1+ω2)/2, Δωп1=ω2-ω1,
где ω1, ω2 - граничные частоты, определяющие полосу частот Δωп1, попадание в которую двух или более сигналов приводит к образованию интермодуляционных помех.
Указанные ложные сигналы (помехи) поступают на первый вход второго сумматора 57, выделяются полосовым фильтром 55, инвертируются по фазе на 180° вторым фазоинвертором и подаются на второй вход второго сумматора 57. На выходе последнего указанные ложные сигналы (помехи) компенсируются.
Следовательно, ложные сигналы (помехи), принимаемые в полосе частот Δωп1, расположенной «слева» от полосы пропускания Δωп приемника, подавляются фильтром-пробкой, состоящим из первого полосового фильтра 55, второго фазоинвертора 56, второго сумматора 57 и реализующим фазокомпенсационный метод.
Если два мощных сигнала на частотах ω3, ω4 или более двух сигналов попадают в полосу частот Δωп2, расположенную справа от полосы пропускания Δωп приемника, то их взаимодействие на нелинейных элементах приводит к образованию интермодуляционных составляющих, которые попадают в полосу пропускания Δωп приемника. При этом частота настройки ωн2 и полоса частот Δωп2 второго полосового фильтра 58 выбираются следующим образом:
ωн2=(ω3+ω4)/2, Δωп2=ω4-ω3,
где ω3, ω4 - граничные частоты, определяющие полосу частоты Δωп2, попадание в которую двух или более сигналов приводит к образованию интермодуляционных помех
Указанные ложные сигналы (помехи) с выхода усилителя 30 высокой частоты через сумматоры 54 и 57, у которых работает только одно плечо, поступают на первый вход третьего сумматора 60, выделяются вторым полосовым фильтром 58, инвертируются по фазе на 180° третьим фазоинвертором 59 и подаются на второй вход третьего сумматора 60. На выходе последнего указанные ложные сигналы (помехи) взаимно компенсируются.
Следовательно, ложные сигналы (помехи), принимаемые в полосе частот Δωп2, расположенной справа от полосы пропускания Δωп приемника, подавляются фильтром-пробкой, состоящим из второго полосового фильтра 58, третьего фазоинвертора 59, третьего сумматора 60 и реализующим фазокомпенсационный метод.
Таким образом, предлагаемая система по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение избирательности и помехоустойчивости приемника. Это достигается подавлением ложных сигналов (помех), принимаемых по каналу прямого прохождения на частоте ωп=ωпр, в полосе частот Δωп1, расположенной «слева» от полосы пропускания Δωп приемника, и в полосе частот Δωп2, расположенной «справа» от полосы пропускания Δωп приемника. Причем для подавления указанных ложных сигналов (помех) используются соответствующие фильтры-пробки, реализующие фазокомпенсационный метод.
название | год | авторы | номер документа |
---|---|---|---|
Автономная сигнально-пусковая система пожаротушения | 2021 |
|
RU2771441C1 |
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ | 2013 |
|
RU2520429C1 |
СИСТЕМА ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ КОНТЕЙНЕРНОЙ БАЗОВОЙ НЕСУЩЕЙ КОНСТРУКЦИИ | 2014 |
|
RU2565492C1 |
СИСТЕМА ДЛЯ ОБНАРУЖЕНИЯ ЧЕЛОВЕКА, ТЕРПЯЩЕГО БЕДСТВИЕ НА ВОДЕ | 2005 |
|
RU2299832C1 |
СИСТЕМА ДЛЯ ОБНАРУЖЕНИЯ ЧЕЛОВЕКА, ТЕРПЯЩЕГО БЕДСТВИЕ НА ВОДЕ | 2010 |
|
RU2448017C1 |
СПОСОБ КОНТРОЛЯ ПОДЛИННОСТИ И ПЕРЕМЕЩЕНИЯ АЛКОГОЛЬНОЙ ПРОДУКЦИИ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2013 |
|
RU2538311C2 |
ПРИЕМНИК СИГНАЛОВ СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМ ГЛОНАСС И НАВСТАР | 2011 |
|
RU2480907C1 |
ФАЗОВЫЙ ПЕЛЕНГАТОР | 2005 |
|
RU2288480C1 |
РЕГИОНАЛЬНАЯ ИНФОРМАЦИОННАЯ СИСТЕМА СВЯЗИ | 2012 |
|
RU2504903C2 |
ЭЛЕКТРОННЫЕ ШАХМАТНЫЕ ЧАСЫ | 2013 |
|
RU2527662C1 |
Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов тревоги на удаленный пункт контроля. Технической задачей изобретения является повышение избирательности и помехоустойчивости приемника путем подавления ложных сигналов (помех), принимаемых по каналу прямого прохождения и интермодуляционным каналам. Автономная сигнально-пусковая система пожаротушения содержит последовательно соединенные тепловой пускатель 1, источник тока 2 с пиротехническим активатором 3, реле времени 4, сигнальное устройство 5, исполнительное устройство 6, корпус 7, шток 8, пружину сжатия 9, концевой участок 10 подпружиненного штока 8, термочувствительный фиксатор 11, соленоид 12, центральный осевой канал 13, выводы 14, мостик накаливания 15, навеску инициирующего вещества 16, концевой участок 17 подпружиненного штока 8, конечный боек 18, капсюль 19, герметичную оболочку 20, твердотельную шашку 21, электрические выходы 22. Передатчик содержит задающий генератор 23, n - отводную линию задержки 24.i (i=1, 2, …, n), фазоинвертора 25.j (j=1, 2, …, m), сумматор 26, усилитель 27 мощности и передающую антенну 28. Приемник содержит приемную антенну 29, усилитель 30 высокой частоты, смесители 31 и 47, генератор 32 пилообразного напряжения, гетеродины 33 и 46, усилители 34 и 48 промежуточной частоты, обнаружитель 35 ФМн сигнала, анализаторы 36 и 38 спектра, удвоитель 37 фазы, блок 39 сравнения, пороговые блоки 40 и 50, линии задержки 41 и 44, ключи 42 и 51, фазовый детектор 43, блок 45 регистрации, коррелятор 49, узкополосный фильтр 52, фазоинверторы 53, 56 и 59, сумматоры 54, 57 и 60, полосовые фильтры 55 и 58, 9 ил.
Автономная сигнально-пусковая система пожаротушения, содержащая последовательно соединенные тепловой пускатель, источник тока с пиротехническим активатором и реле времени, которое соединено с сигнальным устройством через нормально замкнутый контакт и дополнительно соединено с исполнительным устройством через нормально разомкнутый контакт, при этом тепловой пускатель и источник тока с пиротехническим активатором конструктивно объединены и заключены в корпусе, тепловой пускатель выполнен в виде подпружиненного штока, установленного с возможностью поступательного перемещения и взаимодействия с пиротехническим активатором источника тока, причем один из концевых участков подпружиненного штока расположен с возможностью выступания из корпуса и снабжен фиксатором, выполненным из материала с термомеханической памятью формы, источник тока включает оболочку с размещенной в ней с возможностью контакта с пиротехническим активатором твердотельной шашкой из твердосолевой бессепаратной электрохимической композиции на основе литиевого сплава и дисульфида железа, сигнальное устройство выполнено в виде передатчика сигнала на удаленный приемник, при этом передатчик сигнала выполнен в виде последовательно включенных задающего генератора, n-отводной линии задержки, фазоинверторов, включенных в m-отводы n-отводной линии задержки, сумматора, (n+1)-ый вход которого соединен с выходом задающего генератора, усилителя мощности и передающей антенны, а приемник выполнен в виде последовательно включенных приемной антенны и усилителя высокой частоты, последовательно включенных генератора пилообразного напряжения, первого гетеродина, первого смесителя, первого усилителя промежуточной частоты, коррелятора, второго порогового блока, второго ключа, второй вход которого соединен с выходом первого усилителя промежуточной частоты, удвоителя фазы, второго анализатора спектра, блока сравнения, второй вход которого через первый анализатор спектра соединен с выходом второго ключа, первого порогового блока, второй вход которого через первую линию задержки соединен с его выходом, первого ключа, второй вход которого соединен с выходом второго ключа, фазового детектора, второй вход которого через вторую линию задержки соединен с выходом первого ключа, и блока регистрации, к выходу генератора пилообразного напряжения последовательно подключены второй гетеродин, второй смеситель и второй усилитель промежуточной частоты, выход которого соединен с вторым входом коррелятора, управляющий вход генератора пилообразного напряжения соединен с выходом первого порогового блока, частоты ωг1 и ωг2 первого и второго гетеродинов разнесены на удвоенное значение промежуточной частоты
ωг2-ωг1=2ωпр,
выбраны симметричными относительно несущей частоты ωс принимаемого сигнала
ωс-ωг1=ωг2-ωс=ωпр
и перестраиваются синхронно, отличающаяся тем, что она снабжена узкополосным фильтром, двумя полосовыми фильтрами, тремя фазоинверторами и тремя сумматорами, причем к выходу усилителя высокой частоты последовательно подключены узкополосный фильтр, первый фазоинвертор, первый сумматор, второй вход которого соединен с выходом усилителя высокой частоты, первый полосовой фильтр, второй фазоинвертор, второй сумматор, второй вход которого соединен с выходом первого сумматора, второй полосовой фильтр, третий фазоинвертор и третий сумматор, второй вход которого соединен с выходом второго сумматора, а выход соединен с вторым входом первого и второго смесителей.
СИСТЕМА ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ КОНТЕЙНЕРНОЙ БАЗОВОЙ НЕСУЩЕЙ КОНСТРУКЦИИ | 2014 |
|
RU2565492C1 |
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ | 2013 |
|
RU2520429C1 |
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ | 2007 |
|
RU2355037C2 |
АВТОНОМНАЯ СИГНАЛЬНО-ПУСКОВАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ | 2010 |
|
RU2434297C1 |
Фунгицидное средство | 1974 |
|
SU657728A3 |
US 3786461 A1, 15.01.1974. |
Авторы
Даты
2018-01-22—Публикация
2017-01-20—Подача