Изобретение относится к области теплоэнергетики и может быть использовано в системах автономного комплексного энергоснабжения населенных пунктов, промышленных предприятий и иных объектов от возобновляемых источников энергии.
Известны мини-ТЭЦ (малые теплоэлектроцентрали) - теплосиловые установки, служащие для совместного производства электрической и тепловой энергии в агрегатах единичной мощностью до 25 МВт, которые в настоящее время нашли широкое применение в зарубежной и отечественной теплоэнергетике. Среди них наибольшее распространение имеют установки с противодавленческими паровыми турбинами, конденсационными турбинами с отбором пара, газотурбинными агрегатами с водяной или паровой утилизацией тепловой энергии, газопоршневыми, газодизельными и дизельными агрегатами с утилизацией тепловой энергии различных систем этих агрегатов.
Строительство мини-ТЭЦ в непосредственной близости к потребителю имеет ряд важных преимуществ в сравнении с традиционными мощными теплоэлектроцентралями. Однако все перечисленные энергоустановки работают на обычном топливе, что обусловливает высокую стоимость производимых энергоресурсов, приносит вред окружающей среде.
При возрастающих темпах освоения возобновляемых источников энергоресурсов (ВИЭ) в связи с их непостоянством перевод на них относительно мощных энергоустановок сопряжен в основном с двумя проблемами: отсутствием разработанных моделей недорогих энергоемких (сезонных) тепловых аккумуляторов (ТА) и мощных тепломеханических преобразователей (ТМП) - приводов для электрогенераторов, рассчитанных на использование меньших температур рабочего тела, чем в традиционных паровых машинах.
В известном, например, ТА солнечной установки на 10 МВт в г. Барстоу (США) аккумулирующий резервуар сделан в виде цилиндрического сосуда объемом 3058 м3, аккумулирующая среда выполнена из гранитной щебенки в количестве 6100 т, а в качестве теплоносителя используют масло в объеме 712 м3. Сосуд аккумулятора заряжается острым паром при температуре 510°C, который затем охлаждается до 348°C, конденсат покидает систему при 226°C. В режиме разрядки питательная вода с температурой 127°C поступает в разрядный теплообменник, где образуется слегка перегретый пар, имеющий температуру 277°C и давление 2,7 МПа, который направляется к турбине. Описанный ТА из-за ограниченной энергоемкости все-таки не может работать в режиме сезонного аккумулятора, а стоимость его очень высокая.
Известны аккумуляторы солнечной энергии, резервуаром в которых является полость в скальных породах, содержащая до 100 тыс. м3 воды, имеющая кольцевую форму и не теплоизолированная. Прилежащие к полости слои скальной породы принимают участие в тепловом аккумулировании энергии (Бекман Г., Гилли П., Тепловые аккумулированные энергии. М.: Мир, 1987, с. 130).
Сдерживающим фактором в широком освоении таких ТА являются их высокая стоимость, а также ограниченность распространения пригодных для них геологических формаций.
Концепция в создании недорогих сезонных теплоаккумуляторов с энергоресурсом, достаточным для обеспечения бесперебойной работы заявляемой мини-ТЭЦ при самых неблагоприятных погодных условиях, состоит в использовании земельных участков с естественным грунтом в качестве теплоаккумулирующей среды.
Зарядка и разрядка грунтового аккумулятора осуществляется через кольцевые концентрические коллекторы, расположенные под теплоизолирующим покрытием ТА. По контуру аккумулятора на глубину грунта до водоупорных (скальных) пород заложена прослойка теплогидроизоляции, также предотвращающая потери тепла в окружающую среду. Во время зарядки ТА максимальная температура в нем сосредоточена в верхних слоях его центральной области, а более низкая - на его периферии. Во время разрядки поток теплоносителя проходит от периферии к центру аккумулятора через все его нагретые области.
В отношении способов использования запасенного тепла сделана ставка в основном на ТМП без паросиловых агрегатов, что упрощает конструкцию мини-ТЭЦ, повышает безопасность ее эксплуатации и расширяет используемый температурный диапазон ТА, продлевая тем время его использования в режиме разрядки.
И, наконец, в выборе первичных преобразователей возобновляемой энергии ориентиром стали недорогие солнечные воздухонагреватели, а также работающие в автономном режиме и с оптимальном использованием энергии потока ветряки и гидротурбины с воздухонагнетателями вместо обычных электрогенераторов.
Задачей в поиске новых технических решений, содержащихся в заявляемом изобретении, стало создание работающей от ВИЭ достаточно мощной когенераторной энергоустановки для автономного и бесперебойного комплексного энергоснабжения жилых, производственных и прочих объектов. При этом, если для мелких потребителей вполне приемлемым вариантом может стать ранее разработанная модель микро-ТЭЦ, описанная в Заявке №2016105174 от 16.02.2016., то для энергоустановок с мощностью на два-три порядка выше требуется иной подход с новыми требованиями к конструкции и ТМП, и накопителей тепловой энергии.
Поставленная задача решается тем, что мини-ТЭЦ, работающая на ВИЭ, содержащая первичные преобразователи природной энергии, тепловые аккумуляторы и преобразователи тепловой энергии в электрическую с системой утилизации тепловых сбросов, имеет согласно изобретению однотипные либо гибридные первичные преобразовательные установки с энергоресурсом на выходе в виде нагретого и сжатого воздуха, сезонные грунтовые аэродинамические нагреватели - накопители тепловой энергии, а также мощные вторичные тепломеханические преобразователи без паросилового звена.
Первичные преобразователи возобновляемой энергии в тепловую (например, солнечные коллекторы) и(или) в энергию сжатого воздуха (ветро- и гидроустановки с воздухонагнетателями) позволяют использовать простейшие по конструкции и энергоемкие теплоаккумуляторы с непосредственным теплообменом либо с аэродинамическим преобразованием энергии (как в сушильных камерах). При этом подаваемый в них воздух может быть с любой в расчетном диапазоне температурой и циркулировать по замкнутому контуру.
Грунтовые аэродинамические нагреватели - накопители обеспечивают длительную, вплоть до сезонных интервалов времени с недостаточным поступлением природной энергии, и бесперебойную работу мини-ТЭЦ. При этом стоимость сооружения таких ТА минимальна, они практически не нуждаются в обслуживании, а занимаемая ими территория может быть использована для размещения первичных преобразователей.
И, наконец, мощные тепломеханические преобразователи без паросилового звена обеспечат возможность использования мини-ТЭЦ в более широком диапазоне рабочих температур с максимальным отбором теплового ресурса, а это позволит уменьшить габариты аккумулятора и потери тепла.
Фрагмент структурной схемы заявляемой мини-ТЭЦ представлен на фиг. 1.
Мини-ТЭЦ, работающая на ВИЭ, включает в себя первичные преобразователи природной энергии (не показаны). Это могут быть солнечные коллекторы - нагреватели воздуха с принудительной циркуляцией теплоносителя, а также ветро- или гидроустановки с преобразователями энергии ветрового либо водного потока в энергию сжатого воздуха.
Вторичными преобразователями энергии мини-ТЭЦ являются агрегаты, состоящие из тепломеханического привода (ТМП) 1 и электрического генератора (ЭГ) 2. ТМП 1 имеет теплочувствительные элементы с контуром нагрева и контуром охлаждения, последний связан с потребителями сбросового тепла непосредственно либо через теплообменник по замкнутому или разомкнутому контуру с принудительной циркуляцией теплоносителя. Пример такого ТМП описан в заявке №2015134076 от 13.08.2015.
Все преобразователи энергии связаны с грунтовым теплоаккумулятором (ТА), главными особенностями которого являются продуваемость, теплостойкость и экологичность верхнего достаточно мощного теплоаккумулирующего слоя 3, наличие водоупорного (скального) подстилающего пласта 4 и искусственных теплогидроизолирующих оболочек: верхней кровли 5 и граничной стенки 6 по всему его контуру и вниз до водоупорного горизонта. Под верхней кровлей 5 имеются кольцевые каналы - коллекторы 7, между ними расположены экраны 8 для лучшего распределения потока теплоносителя, а также (как промежуточные фундаменты) нагрузки от теплогидроизолирующей кровли 5. Центральный коллектор 9 выполнен в виде пространной полости.
Описание работы всей системы мини-ТЭЦ целесообразно начать с описания свойств теплоаккумулятора. При этом следует учесть достаточно высокий кпд преобразования в нем энергии сжатого воздуха в тепловую энергию. Параметры сред, участвующих в этом процессе (давление и расход воздуха, гидродинамическое сопротивление грунта), определяются при проектировании. Сложнее рассчитать потери тепла через «подошву» ТА. Это требует более подробного анализа.
Метод расчета грунтового ТА с открытым дном изложен на сайте www.teplodarom.com, где рассмотрен тепловой аккумулятор объемом, равным его площади, умноженной на высоту теплоизоляции по периметру (2-3 м).
Тепло, уходящее в недра земли, считается потерянным. Именно эту величину тепловых потерь нам и предстоит оценить.
Задача распространения температурных волн в почве была решена французским математиком и физиком Ж. Фурье.
Обратимся к этой задаче, в которой будем рассматривать ТА как однородное полупространство (потери тепла через кровлю и боковые стенки теплоаккумулятора примем нулевыми.)
0≤x≤∞
Найдем ограниченное решение одномерного уравнения теплопроводности:
Здесь а = корень квадратный (k/с⋅ρ),
u – температура,
k - коэффициент теплопроводности
с - теплоемкость грунта,ρ,
- плотность грунта.
Решение известно как:
где ω=2π/T - период воздействия,
Оно удовлетворяет уравнению теплопроводности и граничному условию (2). Формула (3) в зависимости от выбора знака определяет не одну, а две функции. Однако только функция, соответствующая знаку минус, удовлетворяет требованию ограниченности. Таким образом, решение задачи утечки тепла через дно теплоаккумулятора получаем в виде:
Анализируя полученное решение можно сделать следующие выводы.
Если температура на поверхности теплоаккумулятора периодически меняется, то в глубине также устанавливаются колебания температуры с тем же периодом, причем:
1. Амплитуда колебаний экспоненционально убывает с глубиной:
т.е. если глубины растут в арифметической прогрессии, то амплитуды убывают в геометрической прогрессии (первый закон Фурье).
2. Распределение тепла в теплоаккумуляторе зависит от периода сброса тепла в него. Если используются солнечные коллекторы, то это, как правило, 5 месяцев (в северном полушарии - с мая по сентябрь). Относительное изменение температурной амплитуды равно
Эта формула показывает, что основное тепло сосредоточено в верхней (утепленной) части теплоаккумулятора. И очень быстро убывает вниз. Следовательно основная часть накопленного тепла за летний период может быть выкачена зимой прямой подачей потребителю или с помощью теплового насоса.
При этом необходимо учесть следующие обстоятельства: потери тепла через нижерасположенные горизонты будут значительными в первые годы эксплуатации ТА, затем - через 2-3 года по мере прогревания этих горизонтов - потери резко сократятся и в зависимости от теплопроводности пород, составят в полугодие не более 30% начального запаса.
Кроме того, в самый начальный период зарядки ТА много тепла израсходуется на просушку его теплоаккумулирующей массы, но, поскольку температура в ней при постоянной работе мини-ТЭЦ не будет падать ниже +50°C (даже на периферии), образование конденсата в просушенном грунте невозможно, поэтому потери тепла в дальнейшем останутся в указанных пределах.
Итак, при взаимно независимой работе первичных преобразователей возобновляемой энергии все они создают запас тепла в грунтовом ТА. Отбор тепла автоматически регулируется в зависимости от суммарной нагрузки на вторичном преобразователе мини-ТЭЦ. Контур нагрева ТМП 1 - замкнутый, т.е. в нем все не использованное на нагрев ТЧЭ тепло возвращается в ТА (при этом часть этого тепла может быть отобрана теплообменником на нужды потребителей. Потерями в каналах можно пренебречь). А вся не преобразованная в механическую энергию, необходимую для вращения ЭГ 2, тепловая энергия, полученная от ТЧЭ в зоне их охлаждения, расходуется на предварительный нагрев очередных нагреваемых ТЧЭ и на сброс ее в теплосеть. Сам этот контур непосредственной связи с ТА не имеет. Дефицит тепловой энергии для ее потребителей может быть восполнен по отдельным каналам от ТА и (или) от теплообменника (на схеме не показан) в обратном канале контура нагрева. Этот канал заходит в свой кольцевой коллектор 7, расположенный под кровлей 5 у самой граничной стенки 6. Далее теплоноситель, нагретый при прохождении сквозь горячий грунт, снова, но уже из коллектора 9, подается к ТМП 1. При этом энергия, затрачиваемая нагнетателем на прокачку теплоносителя, как и в контурах первичных преобразователей, идет в основном на нагрев грунта ТА. Следует заметить, что в первичные преобразователи из его коллекторов подается уже нагретый теплоноситель. При его возврате в ТА он подогревает грунтовый слой 3 во всем его объеме, что обеспечивается более равномерным распределением воздушного потока в грунте с помощью экранов 8.
Таким образом, грамотно обустроенный ТА обеспечит надежную работу мини-ТЭЦ при минимальных эксплуатационных затратах.
Широкое освоение заявляемого энергокомплекса позволит решить не только проблемы энергоснабжения многих объектов, но и сбережения энергоресурсов, занятости населения и защиты окружающей среды.
название | год | авторы | номер документа |
---|---|---|---|
Микротеплоэлектроцентраль, работающая на возобновляемых источниках энергии | 2016 |
|
RU2608448C1 |
Солнечная энергоустановка | 2020 |
|
RU2749932C1 |
Безроторный тепломеханический преобразователь | 2016 |
|
RU2636956C1 |
Морской энергокомплекс | 2017 |
|
RU2650916C1 |
Тепломеханический преобразователь ("Русский двигатель") | 2016 |
|
RU2623728C1 |
Тепломеханический преобразователь | 2019 |
|
RU2728009C1 |
Способ переработки твердого топлива с использованием солнечной энергии | 2023 |
|
RU2812312C1 |
ВЕТРОТЕПЛОВОЙ ПРЕОБРАЗОВАТЕЛЬ-НАКОПИТЕЛЬ | 2015 |
|
RU2623637C2 |
ТЕПЛОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ С ЖИДКОСТНЫМ РАБОЧИМ ТЕЛОМ | 2015 |
|
RU2613337C2 |
Модульный энергоблок геотермальной ТЭЦ | 2021 |
|
RU2752682C1 |
Изобретение относится к сооружениям в области теплоэнергетики и может быть использовано в системах автономного комплексного энергоснабжения населенных пунктов, промышленных предприятий и иных объектов от возобновляемых источников энергии (ВИЭ). Мини-ТЭЦ, работающая на ВИЭ, оснащена однотипными либо гибридными первичными преобразовательными установками с энергоресурсом на выходе в виде нагретого и сжатого воздуха, сезонными грунтовыми аэродинамическими нагревателями - накопителями тепловой энергии, а также мощными вторичными тепломеханическими преобразователями с системой утилизации тепловых сбросов и без паросилового звена. Первичные преобразователи возобновляемой энергии в тепловую (например, солнечные коллекторы) и (или) в энергию сжатого воздуха (ветро- и гидроустановки с воздухонагнетателями) позволяют использовать простейшие по конструкции и энергоемкие теплоаккумуляторы с непосредственным теплообменом либо с аэродинамическим преобразованием энергии (как в известных аэродинамических сушильных камерах). Грунтовые аэродинамические нагреватели - накопители тепловой энергии обеспечивают длительную, вплоть до сезонных интервалов времени с недостаточным поступлением природной энергии, и бесперебойную работу мини-ТЭЦ. При этом стоимость сооружения таких теплоаккумуляторов минимальна, они практически не нуждаются в обслуживании, а на занимаемой ими территории могут быть размещены первичные преобразователи. Мощные тепломеханические преобразователи без паросилового звена обеспечивают работу мини-ТЭЦ в более широком диапазоне рабочих температур с максимальным отбором теплового ресурса, а это позволяет уменьшить габариты аккумулятора и потери тепла. Изобретение позволяет решить проблемы энергоснабжения многих объектов, сбережения энергоресурсов и защиты окружающей среды. 1 ил.
Мини-ТЭЦ, работающая на возобновляемых источниках энергии, содержащая первичные преобразователи природной энергии, тепловые аккумуляторы и преобразователи тепловой энергии в электрическую с системой утилизации тепловых сбросов, отличающаяся тем, что она имеет однотипные либо гибридные первичные преобразовательные установки с энергоресурсом на выходе в виде нагретого и сжатого воздуха, сезонные грунтовые аэродинамические нагреватели - накопители тепловой энергии, а также в качестве приводов электрогенераторов - мощные вторичные тепломеханические преобразователи без паросилового звена.
ГЕЛИО-ГЕОТЕРМИЧЕСКАЯ СТАНЦИЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ | 2011 |
|
RU2459157C1 |
Игла для прочистки горелок типа "Примус" | 1926 |
|
SU8846A1 |
Котельная установка теплоэлектроцентрали | 1990 |
|
SU1728577A1 |
Солнечный двигатель | 1988 |
|
SU1625999A1 |
US 5384489 A, 24.01.1995 | |||
ТЕПЛОВОЙ АККУМУЛЯТОР | 2007 |
|
RU2359183C1 |
Авторы
Даты
2018-02-06—Публикация
2016-06-09—Подача