Изобретение относится к авиационно-космической технике, в частности воздушно-реактивным двигателям, предназначенным для применения на сверх- и гиперзвуковых скоростях полета.
Известен прямоточный воздушно-реактивный двигатель (ПВРД), состоящий из входного устройства, диффузора, камеры сгорания, выходного устройства (Теория и расчет воздушно-реактивных двигателей. Под ред. С.М. Шляхтенко., М., Машиностроение, 1987 г., с. 436, рис. 15.1.6). На гиперзвуковых скоростях полета (число М>5) температура торможения воздуха Тн* на входе в ПВРД резко возрастает, что ведет к снижению пропускной способности камеры сгорания, скорость движения воздуха в которой ограничена (λкс<0,2), уменьшению теплоподвода - количество теплоты, подводимое к единице массы воздуха (при высоких температурах воздушного потока значительная часть тепла, подведенного в камеру сгорания с топливом, расходуется на диссоциацию продуктов сгорания, что вынуждает ограничивать температуру газа Тг*, а значит, и теплоподвод). Вследствие указанных причин диапазон применения ПВРД по скорости полета ограничен (М<6).
Известен способ форсирования газотурбинных двигателей, заключающийся в подаче на вход в компрессор жидкого воздуха либо жидкого кислорода (патент US 6644015 В1, МПК F02K 11/00 от 11.11.2003).
Известен способ повышения давления газа, заключающийся в подаче в поток газа, движущийся по каналу, по направлению потока - жидкости, находящейся под давлением (патент RU 2468260 С1, МПК F04F 5/04 от 27.11.12).
Известен ПВРД, состоящий из входного устройства, диффузора, камеры сгорания, выходного устройства, у которого на гиперзвуковых скоростях полета в проточную часть подается вода (патент RU 2087735 С1, МПК F02K 7/10 от 20.08.1997).
Целью изобретения является повышение скорости полета прямоточных воздушно-реактивных двигателей до семи-восьми чисел Маха.
Поставленная цель достигается тем, что в диффузоре ПВРД расположены водяные коллекторы, через которые на гиперзвуковых скоростях полета подается вода, температура паровоздушной смеси не более 2000 К.
Сущность изобретения заключается в том, что на гиперзвуковых скоростях полета критическая температура воды (647 К) меньше температуры торможения воздуха
Тн*, что делает невозможным существование воды в жидком состоянии. Переход воды из жидкого состояния в газообразное сопровождается физическими эффектами: а) понижением температуры (увеличением плотности) воздуха на входе в камеру сгорания и, как следствие, увеличением расхода воздуха через двигатель; б) увеличением расхода топлива вследствие увеличения расхода воздуха; в) увеличением расхода газа вследствие увеличения расходов воздуха, топлива и воды; г) увеличением теплоподвода вследствие увеличения теплоемкости газа (за счет теплоемкости пара) и повышения перепада температур газа в камере сгорания (при тех же температурах газа на выходе из камеры сгорания температура воздуха на входе ниже). Как следствие, тяговые и расходные характеристики ПВРД улучшаются. Наличие эффектов (их величина) зависит от температуры топливовоздушной смеси - при температурах смеси более 2000 К температура газа на входе в камеру сгорания приближается к температуре газа на выходе из камеры сгорания, которая ограничена диссоциацией продуктов сгорания, - двигатель вырождается, соответственно, эффекты сходят на нет.
Предпочтительно, чтобы температура паровоздушной смеси поддерживалась постоянной.
Предпочтительно, чтобы давление воды в коллекторах было более 10 МПа, форсунки направлены по потоку газа.
Подача воды на вход в ПВРД - это частный случай форсирования ВРД водой на сверх- и гиперзвуковых скоростях полета (патент RU 2616137 С1, МПК F02C 3/30, F02C 7/43) - так называемый гиперфорсаж, соответственно, двигатель - гиперфорсированный ПВРД.
На фиг. 1 изображена схема ПВРД;
на фиг. 2 изображены скоростные характеристики ПВРД.
ПВРД (фиг. 1) состоит из входного устройства 1, диффузора 2, внутри которого расположен водяной коллектор 3 с форсунками, направленными по потоку газа, камеры сгорания 4, выходного устройства 5.
Сжатие сверхзвукового набегающего потока с торможением до скорости звука осуществляется во входном устройстве 1. Далее воздух тормозится в диффузоре 2, после чего попадает в камеру сгорания 4. Процесс сгорания заканчивается перед выходным устройством 5. В выходном устройстве (сопле Лаваля) газ разгоняется до сверх- и гиперзвуковых скоростей.
На гиперзвуковых скоростях полета через коллектор 3 под давлением подается вода. Температура воздушного потока на указанных скоростях выше критической для воды (647 К), поэтому вода мгновенно испаряется, поглощая теплоту, в результате чего температура воздушного потока понижается. До тех пор пока температура воздушного потока на входе в камеру сгорания будет менее 2000 К энергетического вырождения ПВРД, независимо от скорости полета, не произойдет, а следовательно, признак «менее 2000 К» является существенным для достижения поставленной цели (определяет предельную скорость полета ПВРД, которая в этом случае составляет семь-восемь чисел Маха).
Ниже приводятся летно-технические характеристики ПВРД (фиг. 1) с исходными данными: диаметр миделя Dмид=1,3 м; коэффициент избытка воздуха в камере сгорания αкс=1,1; потери давления во входном устройстве, камере сгорания, выходном устройстве - стандартные; диссоциация продуктов сгорания учитывается.
На фиг. 2 (сплошные линии) представлены скоростные характеристики ПВРД (фиг. 1) для высоты полета Н=30 км (здесь Тв* - температура воздуха на входе в камеру сгорания, Тг* - температура газа на выходе из камеры сгорания, Gг - расход газа, Gт - расход топлива, CR - коэффициент тяги, η0 - общий кпд двигателя). Здесь же (штриховые линии) представлены характеристики прототипа - тот же ПВРД, но без подачи воды.
До скорости М=5,4 характеристики ПВРД и прототипа совпадают. При достижении указанной скорости температура воздуха на входе в камеру сгорания Тв* достигает 1500 К, а температура газа на выходе из камеры сгорания Тг*=2800 К. При дальнейшем увеличении скорости полета на вход в двигатель подается вода в количестве, при котором температура паровоздушной смеси на входе в камеру сгорания остается постоянной Тв*=1500 К (температура газа на выходе из камеры сгорания также остается постоянной Тг*=2800 К). В прототипе для поддержания Тг*=2800 К приходится увеличивать αкс - снижать относительный расход топлива.
По отношению к прототипу в ПВРД увеличиваются расходы газа Gг и топлива Gт (фиг. 2), что позволяет ПВРД сохранять высокий коэффициент тяги CR на скоростях, где у прототипа коэффициент тяги падает. На скоростях полета М>6 коэффициент тяги ПВРД падает, что является следствием потерь давления во входном устройстве.
Эффективность ПВРД как тепловой машины при подаче воды на вход повышается (фиг. 2). Вода обладает хладоресурсом и кинетической энергией, которые наравне с энергией топлива (кинетической, химической, хладоресурсом) преобразуются в работу перемещения ЛА.
Гиперфорсированный ПВРД может быть использован при создании гиперзвуковых летательных аппаратов (ГЛА). К примеру, корпорация Lockheed Martin приступила к разработке гиперзвукового беспилотника SR-72 с турбопрямоточными двигателями, развивающего скорость М=6 при дальности полета ~ 5500 км. В турбопрямоточных двигателях предполагается использовать двухрежимный ПВРД: сверхзвуковой и гиперзвуковой. Замена двухрежимного ПВРД на гиперфорсированный ПВРД позволит отказаться от использования гиперзвукового режима и, тем самым, реализовать проект.
Дело в том, что результаты исследований в области создания гиперзвуковых ПВРД (ГПВРД), в частности, в рамках «Плана разработки ГЛА в США на период до 2030 года», не дают оснований считать ГПВРД в полной мере работоспособным двигателем, скорее, наоборот.
Пустующую нишу ГПВРД, по-видимому, займут гиперфорсированные ПВРД по двум причинам: а) гиперзвуковой полет не может быть длительным из-за нагрева ЛА, б) выход в космос с использованием ВРД невозможен. Появление гиперфорсированного ПВРД делает разработку ГПВРД практически бесполезной: на скоростях М<7÷8 ГПВРД по всем показателям проигрывает гиперфорсированным ПВРД, турбоэжекторным и др. газотурбинным двигателям; на скоростях М>7÷8 - ракетным двигателям.
название | год | авторы | номер документа |
---|---|---|---|
ГИПЕРЗВУКОВОЙ ТУРБОЭЖЕКТОРНЫЙ ДВИГАТЕЛЬ | 2009 |
|
RU2386829C1 |
ТУРБОЭЖЕКТОРНЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО РЕГУЛИРОВАНИЯ | 2016 |
|
RU2645373C1 |
СПОСОБ ФОРСИРОВАНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ | 2016 |
|
RU2616137C1 |
АВИАЦИОННАЯ СТЕХИОМЕТРИЧЕСКАЯ СИЛОВАЯ УСТАНОВКА И СПОСОБ ЕЕ РЕГУЛИРОВАНИЯ | 2016 |
|
RU2612482C1 |
Камера сгорания прямоточного воздушно-реактивного двигателя для летательного аппарата | 2018 |
|
RU2737463C2 |
ПУЛЬСИРУЮЩИЙ ДВИГАТЕЛЬ ДЕТОНАЦИОННОГО ГОРЕНИЯ ТИПА ПОРФЕД | 1997 |
|
RU2142058C1 |
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ | 2018 |
|
RU2674089C1 |
ТУРБОЭЖЕКТОРНЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2190772C2 |
ПАРОГАЗОТУРБИННАЯ УСТАНОВКА | 2004 |
|
RU2272916C2 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ СРЕДЫ С ЗАДАННЫМ СОДЕРЖАНИЕМ КИСЛОРОДА И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ СРЕДЫ С ЗАДАННЫМ СОДЕРЖАНИЕМ КИСЛОРОДА | 2008 |
|
RU2403501C2 |
Прямоточный воздушно-реактивный двигатель, состоящий из входного устройства, диффузора, камеры сгорания, выходного устройства. На гиперзвуковых скоростях полета (М>5) в проточную часть подается вода. Вода подается через коллекторы, которые расположены внутри диффузора, температура паровоздушной смеси не более 2000 К. Достигается повышение скорости полета ПВРД до семи-восьми чисел Маха. ПВРД может быть использован при создании гиперзвуковых летательных аппаратов. 3 з.п. ф-лы, 2 ил.
1. Прямоточный воздушно-реактивный двигатель, состоящий из входного устройства, диффузора, камеры сгорания, выходного устройства; на гиперзвуковых скоростях полета в проточную часть подается вода, отличающийся тем, что вода подается через коллекторы, которые расположены внутри диффузора, температура паровоздушной смеси не более 2000 К.
2. Прямоточный воздушно-реактивный двигатель по п. 1, отличающийся тем, что температура паровоздушной смеси поддерживается постоянной.
3. Прямоточный воздушно-реактивный двигатель по п. 1, отличающийся тем, что форсунки водяных коллекторов направлены по потоку газа.
4. Прямоточный воздушно-реактивный двигатель по п. 1, отличающийся тем, что давление воды в коллекторах более 10 МПа.
СПОСОБ РАБОТЫ РЕАКТИВНОГО ДВИГАТЕЛЯ | 1995 |
|
RU2087735C1 |
СИСТЕМА И СПОСОБ ДЛЯ ПОВЫШЕНИЯ ВЫХОДНОЙ МОЩНОСТИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2006 |
|
RU2406841C2 |
ГИБРИДНЫЙ РАКЕТНО-ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ АЭРОКОСМИЧЕСКИЙ ДВИГАТЕЛЬ | 2014 |
|
RU2563641C2 |
CN 101029597 A, 05.09.2007 | |||
ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ДВИГАТЕЛЬ | 1996 |
|
RU2121070C1 |
Устройство для плавного регулирования магнитной связи высокочастотных контуров | 1946 |
|
SU72514A1 |
Авторы
Даты
2018-03-21—Публикация
2016-06-20—Подача