Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.
Наиболее близким техническим решением по технической сущности и достигаемому результату является звукопоглощающий элемент, применяемый в качестве облицовки производственных помещений, известный из патента РФ №2463412 (прототип).
Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет наличия пустот между слоями, где отсутствует поглощение звука между слоями звукопоглотителя.
Технический результат - повышение эффективности шумоглушения и надежности конструкции в целом.
Это достигается тем, что в способе звукопоглощения с резонансными вставками, заключающемся в том, что между гладкой и перфорированной поверхностями звукопоглощающего элемента располагают слой звукопоглощающего материала сложной формы, слой сложной формы выполняют в виде чередующихся сплошных участков и пустотелых участков, причем пустотелые участки выполняют в виде призматических поверхностей, имеющих в сечении, параллельном плоскости чертежа, форму параллелограмма, а внутренние поверхности выполняют в виде зубчатой структуры, при этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закрепляют соответственно на гладкой и перфорированной поверхностях, причем полости пустотелых участков, образованные призматическими поверхностями, заполняют звукопоглотителем, а между гладкой поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, а также между перфорированной поверхностью и сплошными участками располагают резонансные пластины с резонансными вставками, выполняющими функции горловин резонаторов «Гельмгольца».
На чертеже изображена схема звукопоглощающего элемента с резонансными вставками для реализации способа звукопоглощения.
Звукопоглощающий элемент для реализации способа звукопоглощения с резонансными вставками содержит гладкую 1 и перфорированную 2 поверхности, между которыми расположен слой звукопоглощающего материала сложной формы, представляющий собой чередование сплошных участков 3 и пустотелых участков 5, причем пустотелые участки 5 образованы призматическими поверхностями, имеющими в сечении, параллельном плоскости чертежа, форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру 6, или волнистую, или поверхность со сферическими поверхностями (на чертеже не показано). Полости 4, образованные гладкой 1 и перфорированной 2 поверхностями, между которыми расположен слой звукопоглощающего материала сложной формы, заполнены звукопоглотителем. При этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закреплены соответственно на гладкой 1 и перфорированной 2 поверхностях. Полости 7 пустотелых участков 5, образованные призматическими поверхностями, заполнены строительно-монтажной пеной. Между гладкой 1 поверхностью и сплошными участками 3 слоя звукопоглощающего материала сложной формы, а также между перфорированной 2 поверхностью и сплошными участками 3, расположены резонансные пластины 8 и 9 с резонансными вставками 10, выполняющими функции горловин резонаторов «Гельмгольца».
В качестве звукопоглощающего материала первого, более жесткого, слоя применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий.
В качестве звукопоглощающего материала второго, более мягкого, слоя применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен.
Материал перфорированной поверхности выполнен из твердых, декоративных вибро-демпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».
Звукопоглощающий элемент для реализации способа звукопоглощения с резонансными вставками работает следующим образом.
Звуковая энергия, пройдя через слой перфорированной поверхности 2 и комбинированный звукопоглощающий слой сложной формы, уменьшается, так как осуществляется переход звуковой энергии в тепловую (диссипация, рассеивание энергии), т.е. в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", имеют место потери энергии за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети микропор звукопоглотителя. Между гладкой 1 поверхностью и сплошными участками 3 слоя звукопоглощающего материала сложной формы, а также между перфорированной 2 поверхностью и сплошными участками 3 расположены резонансные пластины 8 и 9 с резонансными вставками 10, выполняющими функции горловин резонаторов «Гельмгольца».
Резонансные отверстия 10 (вставки), расположенные в резонансных пластинах 8 и 9, выполняют функции горловин резонаторов "Гельмгольца", частотная полоса гашения звуковой энергии которых определяется диаметром и количеством резонансных отверстий 10.
Возможен вариант, когда резонансная пластина 9 с резонансными вставками 12, 13, 14, расположенная между перфорированной поверхностью 2 и сплошными участками 3 слоя звукопоглощающего материала сложной формы, выполнена коробчатой формы, верхняя поверхность которой прилегает к сплошным участкам 3 слоя звукопоглощающего материала, боковые грани прикреплены уголками 11 к перфорированной поверхности 2, а нижняя ее поверхность, обращенная в сторону перфорированной поверхности 2, установлена по отношению к ней с зазором, необходимым для размещения резонансных вставок 12, 13, 14, выполняющих функции горловин резонаторов «Гельмгольца».
Наблюдения показали, что спектр шума обычного вентилятора имеет ярко выраженный тональный характер, а уровень шума при этом превышает санитарные нормы порядка на 5-9 дБ, т.е. обычный глушитель шума активного типа не справляется с высокочастотным импульсом звука, при этом спектр шума имеет ярко выраженный тональный характер. Для решения задачи повышения эффективности глушителя аэродинамического шума предлагается схема резонансного глушителя, встроенного в звукопоглощающий элемент.
Физический эффект работы такого глушителя основан на том, что при резонансном совпадении собственной и возбуждающей частот амплитуда скорости колебания воздуха в горловине резонатора значительна и при наличии трения потери энергии падающей звуковой волны возрастают, при этом реализуется эффект резонатора Гельмгольца.
Резонансная пластина 9 с резонансными вставками 12, 13, 14, встроенная в звукопоглощающий элемент, расположенная между перфорированной поверхностью 2 и сплошными участками 3 слоя звукопоглощающего материала сложной формы и выполненная коробчатой формы, является материализованным объектом резонатора Гельмгольца.
Способ звукопоглощения с резонансными вставками осуществляют следующим образом.
Между гладкой и перфорированной поверхностями звукопоглощающего элемента, располагают слой звукопоглощающего материала сложной формы, который выполняют в виде чередующихся сплошных участков и пустотелых участков, причем пустотелые участки выполняют в виде призматических поверхностей, имеющих в сечении, параллельном плоскости чертежа, форму параллелограмма, а внутренние поверхности выполняют в виде зубчатой структуры, при этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закрепляют соответственно на гладкой и перфорированной поверхностях, причем полости пустотелых участков, образованные призматическими поверхностями, заполняют звукопоглотителем, а между гладкой поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, а также между перфорированной поверхностью и сплошными участками располагают резонансные пластины с резонансными вставками, выполняющими функции горловин резонаторов «Гельмгольца».
Максимальное поглощение энергии для одиночного резонатора будет наблюдаться на резонансной частоте:
где kp - проводимость отверстий в резонансных вставках 12, 13, 14, соединяющих их с резонансной пластиной 9, имеющей аналог резонаторной камеры объемом Vp (м3); Vp - объем резонаторной камеры (м3); с - скорость звука в воздухе, принимаемая в расчетах равной 340 м/с.
где n - количество отверстий во вставке; So - площадь одного отверстия диаметром do,м2;
lотв - глубина отверстия, м.
Задаваясь величиной объема Vp резонаторной полости, согласно габаритным размерам резонансной пластины 9, а также резонансной частотой fp "лопастного" импульсного источника шума, например вентилятора, определяем проводимость отверстий:
и их количество
Эффективность снижения уровня шума данным глушителем будет определяться формулой:
где F - площадь поперечного сечения резонансной пластины 9, м2; f, fp - возбуждающая и собственная частоты резонатора Гельмгольца.
название | год | авторы | номер документа |
---|---|---|---|
АКУСТИЧЕСКИЙ КОЖУХ | 2017 |
|
RU2656419C1 |
СПОСОБ ЗВУКОИЗОЛЯЦИИ ОБОРУДОВАНИЯ | 2017 |
|
RU2646255C1 |
ЗВУКОИЗОЛИРУЮЩИЙ КОЖУХ | 2017 |
|
RU2646879C1 |
СТЕНД ДЛЯ ИССЛЕДОВАНИЯ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ЗВУКОПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ В ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ | 2017 |
|
RU2648123C1 |
СПОСОБ ИССЛЕДОВАНИЯ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ЗВУКОПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ | 2017 |
|
RU2646248C1 |
СПОСОБ АКУСТИЧЕСКИХ ИСПЫТАНИЙ ШУМОПОГЛОЩАЮЩИХ ПАНЕЛЕЙ | 2017 |
|
RU2671916C1 |
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ЦЕХА | 2017 |
|
RU2671278C1 |
СПОСОБ ЗВУКОИЗОЛЯЦИИ ОБОРУДОВАНИЯ | 2017 |
|
RU2642039C1 |
АКУСТИЧЕСКИЙ ЭКРАН | 2017 |
|
RU2651995C1 |
ЗВУКОИЗОЛИРУЮЩЕЕ ОГРАЖДЕНИЕ | 2017 |
|
RU2665721C1 |
Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях. Технический результат заключается в повышении эффективности шумоглушения и надежности конструкции в целом. В способе звукопоглощения с резонансными вставками между гладкой и перфорированной поверхностями звукопоглощающего элемента располагают слой звукопоглощающего материала сложной формы. Слой сложной формы выполняют в виде чередующихся сплошных участков и пустотелых участков, причем пустотелые участки выполняют в виде призматических поверхностей, имеющих в сечении, параллельном плоскости чертежа, форму параллелограмма, а внутренние поверхности выполняют в виде зубчатой структуры. Вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закрепляют соответственно на гладкой и перфорированной поверхностях. Полости пустотелых участков, образованные призматическими поверхностями, заполняют звукопоглотителем, а между гладкой поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, а также между перфорированной поверхностью и сплошными участками располагают резонансные пластины с резонансными вставками, выполняющими функции горловин резонаторов «Гельмгольца». Резонансную пластину с резонансными вставками, расположенную между перфорированной поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, выполняют коробчатой формы, верхняя поверхность которой прилегает к сплошным участкам слоя звукопоглощающего материала, а боковые грани прикрепляют уголками к перфорированной поверхности. Нижнюю ее поверхность, обращенную в сторону перфорированной поверхности, устанавливают по отношению к ней с зазором, необходимым для размещения резонансных вставок, выполняющих функции горловин резонаторов «Гельмгольца». Параметры резонансных вставок вычисляют по определенным математическим зависимостям. 1 ил.
Способ звукопоглощения с резонансными вставками, заключающийся в том, что между гладкой и перфорированной поверхностями звукопоглощающего элемента располагают слой звукопоглощающего материала сложной формы, слой сложной формы выполняют в виде чередующихся сплошных участков и пустотелых участков, причем пустотелые участки выполняют в виде призматических поверхностей, имеющих в сечении, параллельном плоскости чертежа, форму параллелограмма, а внутренние поверхности выполняют в виде зубчатой структуры, при этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закрепляют соответственно на гладкой и перфорированной поверхностях, причем полости пустотелых участков, образованные призматическими поверхностями, заполняют звукопоглотителем, а между гладкой поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, а также между перфорированной поверхностью и сплошными участками располагают резонансные пластины с резонансными вставками, выполняющими функции горловин резонаторов «Гельмгольца», отличающийся тем, что резонансную пластину с резонансными вставками, расположенную между перфорированной поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, выполняют коробчатой формы, верхняя поверхность которой прилегает к сплошным участкам слоя звукопоглощающего материала, а боковые грани прикрепляют уголками к перфорированной поверхности, при этом нижнюю ее поверхность, обращенную в сторону перфорированной поверхности, устанавливают по отношению к ней с зазором, необходимым для размещения резонансных вставок, выполняющих функции горловин резонаторов «Гельмгольца», а параметры резонансных вставок вычисляют по следующим зависимостям:
максимальное поглощение энергии для одиночного резонатора будет наблюдаться на резонансной частоте:
где kp – проводимость отверстий в резонансных вставках 12, 13, 14, соединяющих их с резонансной пластиной 9, имеющей аналог резонаторной камеры объемом Vp (м3); Vp – объем резонаторной камеры (м3); с – скорость звука в воздухе, принимаемая в расчетах равной 340 м/с,
где n – количество отверстий во вставке; So – площадь одного отверстия диаметром do, м2; lотв – глубина отверстия, м,
задаваясь величиной объема Vp резонаторной полости, согласно габаритным размерам резонансной пластины 9, а также резонансной частотой fp «лопастного» импульсного источника шума, например вентилятора, определяют проводимость отверстий:
,
эффективность снижения уровня шума данным глушителем будет определяться формулой:
где F – площадь поперечного сечения резонансной пластины 9, м2; f, fp – возбуждающая и собственная частоты резонатора Гельмгольца.
ЗВУКОПОГЛОЩАЮЩИЙ ЭЛЕМЕНТ КОЧЕТОВА С РЕЗОНАНСНЫМИ ВСТАВКАМИ | 2016 |
|
RU2613061C1 |
ШТУЧНЫЙ ЗВУКОПОГЛОТИТЕЛЬ ТИПА КОЧСТАР | 2013 |
|
RU2531152C1 |
ЗВУКОПОГЛОЩАЮЩАЯ КОНСТРУКЦИЯ ПРОИЗВОДСТВЕННОГО ПОМЕЩЕНИЯ | 2010 |
|
RU2463412C2 |
ЗВУКОПОГЛОЩАЮЩАЯ КОНСТРУКЦИЯ | 2014 |
|
RU2561389C1 |
DE 3337090 A1, 02.05.1985 | |||
БОГОЛЕПОВ И.И | |||
Промышленная звукоизоляция | |||
Л.: Судостроение, 1986, всего 368 с., с.290-309. |
Авторы
Даты
2018-03-22—Публикация
2017-03-03—Подача