Способ генерации и вывода электронного пучка в область высокого давления газа, до атмосферного Российский патент 2018 года по МПК H05H5/00 H01J29/00 H01J29/56 

Описание патента на изобретение RU2650101C1

Область техники

Изобретение относится к способам создания сфокусированных электронных пучков и вывода их в область повышенного давления, до атмосферного.

Уровень техники

Как правило, электронный пучок формируется в вакууме либо в газе промежуточного давления. Для вывода пучка в атмосферу требуется разделить область формирования пучка и область его использования. Это делается различными способами.

Известны способы вывода пучка электронов в атмосферу с разделением объемов источника и приемника электронов твердотельной перегородкой, прозрачной для электронов, но непрозрачной для газов (Ю.И. Голубенко, Н.К. Куксанов, Р.А. Салимов, П.И. Немытов. Вывод мощного пучка электронов в атмосферу через два параллельно расположенных листа титановой фольги. - Прикладная механика и техническая физика. 2010. Т. 51, №2).

Известен способ вывода электронов и фотонов из газовой среды сосуда-источника в сосуд-приемник, ограничивающий перетекание газа в сосуд с меньшим давлением путем пропускания электронов через отверстия в ряде диафрагм и откачки газа из объемов между диафрагмами, причем отверстия всех диафрагм одновременно открывают на время, меньшее времени прохождения газа в сосуд-приемник, но достаточное для прохождения электронов, все остальное время удерживают отверстия в закрытом состоянии, (патент RU 2312472, МПК опубл. 10.12.2007 г.).

Способ позволяет выводить электронные пучки с практически неограниченной плотностью электронного тока. Однако реализация способа затруднена ввиду сложности создания окон с заслонками, имеющими время открытия порядка 10-100 мкс, так как заслонки должны открываться и закрываться одновременно. Кроме того, область применения способа ограничена, так как он используется исключительно для импульсных электронных пучков.

Известен способ вывода электронного пучка в атмосферу. Электронные источники на основе ВТР работают при давлениях до 80 Па и более, что позволяет обеспечить рабочий вакуум только механическими форвакуумными насосами и снизить количество ГДО до двух, в отдельных случаях удается получить электронный пучок с одним ГДО (Л.Н. Орликов. Вопросы теории и практики вывода в газ низкоэнергетических электронных пучков. Томск 2002), который основан на применении электронных источников на основе высоковольтного тлеющего разряда (ВТР) с газодинамическим окном (ГДО).

Недостатками этого технического решения является ограниченное применение электронно-лучевого оборудования из-за малых значений яркости пучков, и при небольшом количестве ступеней откачки в системе вывода пучка в атмосферу необходимо применять вакуумные насосы с высокой производительностью.

Известен способ создания плазменного катода, выбранный за прототип, в котором плазменный катод создают при помощи отражательного разряда с полым катодом (С.Ю. Корнилов, Н.Г. Ремпе. Формирование и фокусировка электронных пучков в электронно-оптической системе с плазменным эмиттером в магнитном поле. Журнал технической физики. - 2012. - том 82. - вып. 2. - С. 79-84 и др.).

Недостатком этого способа является ограниченный пробоем ускоряющего промежутка диапазон рабочего давления в рабочей области вакуумной камеры.

Сущность изобретения

Технический результат, который достигается с помощью предложенного решения, заключается в возможности использования электронного пучка в рабочей области в диапазоне давлений от глубокого вакуума до повышенного, в том числе атмосферного давления.

Технический результат согласно предложенному решению достигается тем, что создают плазменный катод низковольтным отражательным разрядом с полым катодом, электрическим полем ускоряют вышедшие из плазменного катода электроны, проводят ускоренные электроны через лучепровод в область фокусирующего магнитного поля, выводят сфокусированный электронный пучок в атмосферу через две диафрагмы, область между которыми откачивают, проводят дополнительную откачку лучепровода, при этом снижают давление между диафрагмами путем формирования воздушной струи, поперечной направлению основного воздушного потока из области использования пучка.

Чертежи

На фиг. 1 представлен внешний вид электронного источника с плазменным катодом и системы вывода пучка в атмосферу, на фиг. 2 - вид А.

С помощью электронного источника формируют в вакууме непрерывный сфокусированный электронный луч. Электронный источник состоит из плазменного катода, системы ускорения, транспортировки и фокусировки электронного пучка. Плазменный катод включает установленную на высоковольтном изоляторе 1 разрядную камеру (на рисунке не показана), в которой горит низковольтный отражательный разряд с полым катодом и созданы условия для выхода электронов в область ускоряющего электрического поля через отверстие в одном из электродов разрядной камеры (эмиттерном катоде). На эмиттерный катод подается отрицательный относительно заземленного ускоряющего электрода 2 потенциал. При этом в межэлектродном промежутке 3 между эмиттерным катодом и электродом 2 создается сильное электрическое поле, которое ускоряет электроны, вышедшие из плазмы. В ускоряющем электроде 2 электронного источника имеется отверстие, предназначенное для выхода ускоренных электронов в лучепровод 4, в котором отсутствует электрическое поле (пространство дрейфа). Прошедшие высоковольтный межэлектродный промежуток 3 и ускорившиеся до полной энергии электроны в лучепроводе 4 попадают в магнитное поле фокусирующей линзы 5.

Сфокусированный электронный пучок выводят из вакуума в атмосферу через две диафрагмы 6 и 7, объем 8 между которыми откачивается со скоростью 500 l/s через патрубок 9 насосом Рутса. Давление между диафрагмами дополнительно снижают путем формирования воздушной струи 10, поперечной направлению основного воздушного потока из области использования пучка. Для снижения давления в лучепроводе 4 и в области ускорения электронов 3 проводится дополнительная откачка через патрубок 11 турбомолекулярным насосом со скоростью 700 l/s. Распределение давления в ускоряющем промежутке 3 при такой откачке близко к рабочему при эксплуатации пушки в вакуумной камере.

Похожие патенты RU2650101C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ГЕНЕРАЦИИ И ВЫВОДА ЧАСТИЦ 2001
  • Орликов Л.Н.
  • Орликов Н.Л.
RU2191489C1
Плазменный источник электронов с системой автоматического поджига тлеющего разряда в полом катоде, функционирующий в среднем вакууме 2023
  • Бакеев Илья Юрьевич
  • Зенин Алексей Александрович
  • Климов Александр Сергеевич
RU2816693C1
СИЛЬНОТОЧНАЯ ЭЛЕКТРОННАЯ ПУШКА 2006
  • Озур Григорий Евгеньевич
  • Проскуровский Дмитрий Ильич
  • Карлик Константин Витальевич
RU2313848C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОК И МОНОКРИСТАЛЛОВ СВЕРХПРОВОДЯЩИХ МЕТАЛЛООКСИДНЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Багуля А.В.
  • Казаков И.П.
  • Негодаев М.А.
  • Цехош В.И.
RU2012104C1
МАСС-СПЕКТРОМЕТРИЧЕСКИЙ АНАЛИЗАТОР ГАЗОВОГО ТЕЧЕИСКАТЕЛЯ 2013
  • Козлов Николай Иванович
RU2554104C2
СПОСОБ РЕГУЛИРОВАНИЯ ИОННЫХ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2008
  • Юлдашев Эдуард Махмутович
RU2458490C2
СПОСОБ НЕЙТРАЛИЗАЦИИ ОБЪЕМНОГО ЗАРЯДА ИОННЫХ ПУЧКОВ В ИОННЫХ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2008
  • Юлдашев Эдуард Махмутович
RU2429591C2
ЭЛЕКТРОННО-ЛУЧЕВАЯ УСТАНОВКА 2000
  • Гринченко Л.Я.
  • Гусев Н.С.
  • Гусев С.И.
  • Еремин А.П.
  • Завьялов М.А.
  • Лисин В.Н.
  • Мартынов В.Ф.
  • Тюрюканов П.М.
  • Уваев А.Г.
  • Филачев А.М.
RU2192687C2
ПЛАЗМЕННЫЙ ИСТОЧНИК И СПОСОБ ГЕНЕРИРОВАНИЯ ЛУЧЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ 2013
  • Рибтон Колин
  • Сандерсон Аллан
RU2621323C2
ИНЖЕКТОР ЭЛЕКТРОНОВ С ВЫВОДОМ ЭЛЕКТРОННОГО ПУЧКА В СРЕДУ С ПОВЫШЕННЫМ ДАВЛЕНИЕМ И ЭЛЕКТРОННО-ЛУЧЕВАЯ УСТАНОВКА НА ЕГО ОСНОВЕ 2007
  • Завьялов Михаил Александрович
  • Мартынов Владимир Филиппович
  • Тюрюканов Павел Михайлович
  • Казаков Алексей Иванович
RU2348086C1

Иллюстрации к изобретению RU 2 650 101 C1

Реферат патента 2018 года Способ генерации и вывода электронного пучка в область высокого давления газа, до атмосферного

Изобретение относится к области создания сфокусированных электронных пучков и вывода их в область повышенного давления, до атмосферного. Плазменный катод создается низковольтным отражательным разрядом с полым катодом, электрическим полем ускоряют вышедшие из плазменного катода электроны. Ускоренные электроны проводят через лучепровод в область фокусирующего магнитного поля и выводят сфокусированный электронный пучок в атмосферу через две диафрагмы, область между которыми откачивают. Проводят дополнительную откачку лучепровода, снижая давление между диафрагмами путем формирования воздушной струи, поперечной направлению основного воздушного потока из области использования пучка. Технический результат - использование электронного пучка в рабочей области в диапазоне давлений от глубокого вакуума до повышенного, в том числе атмосферного давления. 2 ил.

Формула изобретения RU 2 650 101 C1

Способ генерации и вывода электронного пучка в область высокого давления газа, заключающийся в создании плазменного катода низковольтным отражательным разрядом с полым катодом, отличающийся тем, что электрическим полем ускоряют вышедшие из плазменного катода электроны, проводят ускоренные электроны через лучепровод в область фокусирующего магнитного поля, выводят сфокусированный электронный пучок в атмосферу через две диафрагмы, область между которыми откачивают, проводят дополнительную откачку лучепровода, при этом снижают давление между диафрагмами путем формирования воздушной струи, поперечной направлению основного воздушного потока из области использования пучка.

Документы, цитированные в отчете о поиске Патент 2018 года RU2650101C1

Корнилов С.Ю
Формирование и фокусировка электронных пучков в электронно-оптической системе с плазменным эмиттером в магнитном поле
Журнал технической физики, 2012, том 82, вып
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Цилиндрический сушильный шкаф с двойными стенками 0
  • Тринклер В.В.
SU79A1
RU 23124472 C2, 10.12.2007
WO 2012055458 A1, 10.03.2016
WO 2016035942 A1, 10.03.2016.

RU 2 650 101 C1

Авторы

Корнилов Сергей Юрьевич

Ремпе Николай Гербертович

Даты

2018-04-09Публикация

2016-12-14Подача