Изобретение относится к области измерительной техники, а именно к радиометрии фотонного излучения, и может быть использовано при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах и проходных предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды, в том числе при выполнении контроля радиоактивного загрязнения одежды, обуви и кожных покровов работников радиационных предприятий и персонала АЭС.
Известен радиационный монитор МРП-АТ920В производства предприятия «АТОМТЕХ», выполненный в виде стойки, которая включает в себя интеллектуальный блок детектирования с неорганическим сцинтиллятором NaI(Tl), микроконтроллером и устройством световой и звуковой сигнализации. ГУП «АТОМТЕХ». Рекламный проспект, 2016. Недостатком известного радиационного монитора является отсутствие измерения мощности эквивалентной дозы, что не позволяет контролировать дозовую нагрузку и оперативно принимать решение о превышении норм радиационной безопасности персонала предприятий или населения.
Известен пешеходный радиационный монитор ТСРМ82 производства ФГУП ВНИИА им. Н.Л. Духова, который содержит четыре блока детектирования (БД) фотонов на основе неорганического сцинтиллятора CsI(Tl), а также выносной блок питания и управления (БПУ) со световой и звуковой сигнализацией. Пешеходный радиационный монитор γ-излучения ТСРМ82, ФГУП «ВНИИА им. Н.Л. Духова». Рекламный проспект, 2016. Данное техническое решение принято в качестве прототипа. Недостатком является ограниченная область применения и недостаточная эффективность применения из-за отсутствия измерения мощности эквивалентной дозы.
Известен способ измерения мощности эквивалентной дозы известного моноэнергетического фотонного излучения, заключающийся в том, что регистрируют фотоэлектронным умножителем (ФЭУ) световые вспышки света, которые образует излучение, взаимодействуя с веществом сцинтиллятора, получают скорость счета импульсов и устанавливают связь между скоростью счета и мощностью дозы. В.И. Иванов. Курс дозиметрии. 3 издание, переработанное и дополненное. - М.: Атомиздат, 1978, с. 130-139. Результат определения мощности эквивалентной дозы существенно зависит от энергии фотонов. Сложность в измерении мощности эквивалентной дозы неизвестного фотонного излучения детекторами, выполненными на основе неорганических сцинтилляторов, заключается в неопределенности энергии фотонов и неоднозначной зависимости от нее сечения взаимодействия с материалом детектора. Например, на фиг. 1 приведен ход сечения от энергии Е регистрируемых фотонов для сцинтиллятора CsI(T1). Решение принято в качестве прототипа.
Задачей изобретения является определение дозовой характеристики обнаруженного радиационным монитором неизвестного фотонного излучения, позволяющее принимать решение о превышении предельно допустимых уровней дозы, повышение эффективности работы устройства, расширение области применения радиационного монитора.
Техническим результатом является измерение радиационным монитором с детекторами на основе неорганических сцинтилляторов мощности эквивалентной дозы неизвестного фотонного излучения в диапазоне 40 кэВ-3 МэВ, позволяющей повысить эффективность работы устройства, расширить область применения радиационного монитора.
Технический результат достигается тем, что в способе определения мощности эквивалентной дозы гамма-излучения, заключающемся в том, что измерения проводят с применением радиационного монитора с детектором на основе неорганического сцинтиллятора счет измеряют в шести энергетических зонах интервала от 40 кэВ до 3 МэВ, по которому определяют мощность эквивалентной дозы фотонов в соответствии с измеренной заранее градуировочной зависимостью счета импульсов от мощности эквивалентной дозы в каждой зоне; зону №1 определяют в диапазоне от 40 кэВ до 80 кэВ, зону №2 - от 80 кэВ до 220 кэВ, зону №3 - от 220 кэВ до 400 кэВ, зону №4 - от 400 кэВ до 800 кэВ, зону №5 - от 800 кэВ до 1450 кэВ, зону №6 - от 1450 кэВ до 3000 кэВ, а в радиационном мониторе, содержащем блок питания и управления, блок детектирования, включающий в себя неорганический сцинтиллятор, соединенный с ним фотоэлектронный умножитель, светодиод со схемой управления, высоковольтный блок питания со схемой управления, высоковольтный делитель, микропроцессор, дискриминатор нижнего уровня, дополнительно содержится два ключа №1, №2 и схема управления ими, первый выход схемы управления подключен к ключу №1, второй к ключу №2, выход ключей соединен с пиковым детектором, а он соединен с отградуированным по энергии фотонов аналого-цифровым преобразователем.
Сущность изобретения по способу измерения мощности эквивалентной дозы заключается в следующем: область энергий регистрируемых фотонов от 40 кэВ до 3 МэВ разбивают на 6 зон, каждая из которых соответствует определенному источнику фотонов. Зона №1 находится в диапазоне энергий от 40 кэВ до 80 кэВ (241Am), №2 от 80 кэВ до 220 кэВ (57Со), №3 от 220 кэВ до 400 кэВ (133Ва), №4 от 400 кэВ до 800 кэВ (137Cs), №5 от 800 кэВ до 1450 кэВ (60Со), №6 от 1450 кэВ до 3000 кэВ (226Ra). Для каждой зоны измеряют градуировочную характеристику - зависимость счета импульсов N от мощности эквивалентной дозы Р фотонного излучения, которая вычисляется по формуле
где Kγ - ионизационная постоянная источника фотонов с энергией Е, мЗв⋅см2 /(МБк⋅ч);
R - расстояние от точечного источника до ионизируемого объекта, см;
А - активность источника, кБк (В.П. Машкович., А.В. Кудрявцева. Защита от ионизирующих излучений. Справочник. - М.: Энергоатомиздат, 1995. - С. 42); изменяя расстояние до источника или его активность, получают градуировочную характеристику - зависимость счета от мощности дозы для каждого выбранного интервала энергии фотонов N=f(P); полученные зависимости аппроксимируют полиномом; степень полинома определяют максимальной близостью коэффициента корреляции к значению 1 (пример на фиг. 2); определяют принадлежность излучения к одной из зон; измеряют счет импульсов N в этой зоне, по значению которого определяют мощность эквивалентной дозы.
Сущность изобретения по устройству поясняется на фиг. 3.
На фиг. 3 представлена схема радиационного монитора, где: 1 - сцинтиллятор; 2 - ФЭУ; 3 - схема управления светодиодом; 4 - светодиод; 5 - схема управления высоковольтным блоком питания; 6 - высоковольтный блок питания; 7 - высоковольтный делитель; 8 - микропроцессор; 9 - аналого-цифровой преобразователь (АЦП); 10 - пиковый детектор; 11 - ключ №1; 12 - ключ №2; 13 - схема управления ключами; 14 - дискриминатор нижнего уровня; 15 - зарядочувствительный усилитель; 16 - БД; 17 - БПУ.
Сцинтиллятор 1 соединен с ФЭУ 2 и светодиодом 4, связанным со схемой управления 3 и микропроцессором 8. ФЭУ 2 последовательно соединен с высоковольтным блоком 6, его схемой управления 5, высоковольтным делителем 7 и микропроцессором 8, а также связан с зарядочувствительным усилителем 15, соединенным с дискриминатором нижнего уровня 14, который сопряжен с микропроцессором 8. Дискриминатор 14 соединен со схемой управления ключами 13, связанной с микропроцессором 8 и имеющей выходы, соединенные с ключами №1 11 и №2 12, связанными с пиковым детектором 10, который сопряжен с АЦП 9 и микропроцессором 8. Выход БД 16 соединен с БПУ 17.
Радиационный монитор работает следующим образом.
После включения монитор осуществляет самоконтроль, потом переходит в режим измерения фона, а потом автоматически или по команде с БПУ 17 в состояние контроля объекта. Напряжение с высоковольтного блока питания 6, которым управляет схема 5, подают на высоковольтный делитель 7, который питает ФЭУ 2. Фотоны излучения вызывают световые вспышки в сцинтилляторе 1 блока детектирования 16. Световые вспышки регистрируют с помощью ФЭУ, преобразуя их в электрические импульсы, которые подают на зарядочувствительный усилитель 15. Усиленные импульсы напряжения направляют на дискриминатор нижнего уровня 14, импульсы, амплитуда которых ниже порогового значения, отбрасывают, остальные направляют на схему управления ключами 13 и АЦП 9. Схема управления ключами 13 не запущена, ключ №1 11 и ключ №2 12 закрыты. Импульсы подают на АЦП 9, который оцифровывает их, и микропроцессор 8, который формирует счет. Информацию о счете с микропроцессора 8 направляют в БПУ 17, счет сравнивают с пороговым значением и принимают решение о наличии источника. Если принято решение о наличии источника, то с БПУ 17 на микропроцессор 8 БД 16 подают сигнал на запуск схемы управления ключами 13, ключ №1 11 открывают, идет заряд пикового детектора 10 в течение времени, установленного схемой управления. Затем ключ №1 11 закрывают и сигнал с пикового детектора 10, поступает на АЦП 9 микропроцессора 8. Амплитуду импульса запоминают, после чего открывают ключ №2 12, происходит разряд пикового детектора. Информацию об импульсах накапливают в памяти микропроцессора 8 в виде массива данных и передают на БПУ 17. В памяти БПУ 17 находится программа поиска пиков по известному методу второй производной и калибровка АЦП 9 по энергии. Полученный массив разбивают на 6 энергетических зон. Программа на БПУ определяет принадлежность найденного пика к одной из зон, по измеренному счету определяют мощность эквивалентной дозы с помощью градуировочной зависимости N=f(P) в определенной энергетической зоне. Измерение мощности эквивалентной дозы осуществляют введением в схему устройства пикового детектора 10, ключей №1 11 и №2 12, схемы управления ключами 13 и АЦП 9.
Стабилизацию измерений осуществляют с применением светодиода 4, который с помощью схемы управления 3 светит на ФЭУ 2 с определенной частотой.
В таблице для примера приведены результаты измерения радиационным монитором мощности дозы Р и соответствующий счет импульсов N для различных источников гамма-излучения с активностью А на расстоянии 10 см.
Выбор зоны среди измеренных импульсов АЦП производят с помощью поиска пиков полного поглощения нуклидов (Н.Г. Волков, Ю.И. Малахов, Ю.В. Пятков. Математические методы обработки спектров. Линейчатые спектры.- Москва, 1986. - С. 11). По градуировочной характеристике определяют мощность эквивалентной дозы гамма-излучения. Если пик полного поглощения обнаружить невозможно, находят средневзвешенную мощность эквивалентной дозы. Для каждой из шести зон исходя из счета в этой зоне определяют мощность эквивалентной дозы. Средневзвешенную мощность эквивалентной дозы гамма-излучения Рср определяют как
где Pi - мощность дозы в i-й зоне в мкЗв/ч, wi - вес i-й зоны. Вес зоны назначают в соответствии с важностью энергии этой зоны. Например, если заранее известно, что определяющим излучателем является уран, обогащенный изотопом 235U, то назначают больший вес зоны №2, в которую входят энергии от 80 до 220 кэВ, соответствующие основным энергиям гамма- и рентгеновского излучения урана.
название | год | авторы | номер документа |
---|---|---|---|
Миниатюрный детектор фотонного излучения | 2023 |
|
RU2811667C1 |
Радиационный монитор нейтронного излучения | 2021 |
|
RU2789748C2 |
УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ | 2008 |
|
RU2367980C1 |
СЦИНТИЛЛЯЦИОННЫЙ СЧЕТЧИК ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ | 2013 |
|
RU2548048C1 |
ДЕТЕКТОР ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ | 2022 |
|
RU2795377C1 |
КОМБИНИРОВАННЫЙ ДЕТЕКТОР ИЗЛУЧЕНИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ НА МАЛЫХ КОСМИЧЕСКИХ АППАРАТАХ ТИПА КУБСАТ | 2022 |
|
RU2803044C1 |
Способ измерения энергетического спектра и дозовых характеристик нейтронного излучения в реальном времени и устройство для его реализации | 2021 |
|
RU2780339C1 |
Блок детектирования эквивалентной дозы смешанного гамма-нейтронного излучения | 1986 |
|
SU1367721A1 |
КОМПАКТНЫЙ ДЕТЕКТОР КОСМИЧЕСКОЙ РАДИАЦИИ ДЛЯ ИСПОЛЬЗОВАНИЯ НА МАЛЫХ КОСМИЧЕСКИХ АППАРАТАХ | 2020 |
|
RU2759244C1 |
СПОСОБ ИЗМЕРЕНИЯ МОЩНОСТИ ДОЗЫ В СМЕШАННОМ АППАРАТУРНОМ СПЕКТРЕ ГАММА-ИЗЛУЧЕНИЯ | 2015 |
|
RU2613594C1 |
Группа изобретений относится к области измерительной техники, а именно к радиометрии фотонов, и может быть использована при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды. Сущность изобретений заключается в том, что в схему устройства вводится пиковый детектор, два ключа и схема управления ими и аналого-цифровой преобразователь, откалиброванный по энергии фотонного излучения в области 40 кэВ - 3 МэВ, а в способе определения мощности эквивалентной дозы эту область разбивают на шесть энергетических зон, измеряют счет в каждой из них и по заранее измеренной градуировочной зависимости определяют мощность эквивалентной дозы. Технический результат – повышение эффективности работы устройства, расширение области применения радиационного монитора. 2 н.п. ф-лы, 3 ил., 1 табл.
1. Способ измерения мощности эквивалентной дозы гамма-излучения, заключающийся в том, что измерения проводят с применением радиационного монитора с детекторами на основе неорганических сцинтилляторов, отличающийся тем, что область энергий регистрируемых фотонов от 40 кэВ до 3 МэВ разбивают на 6 зон: зону №1 определяют в диапазоне от 40 до 80 кэВ, зону №2 - от 80 до 220 кэВ, зону №3 - от 220 до 400 кэВ, зону №4 - от 400 до 800 кэВ, зону №5 - от 800 до 1450 кэВ, зону №6 - от 1450 до 3000 кэВ, для каждой зоны измеряют градуировочную характеристику - зависимость счета импульсов N от мощности эквивалентной дозы Р фотонного излучения, которая вычисляется по формуле
где Kγ - ионизационная постоянная источника фотонов с энергией Е, мЗв⋅см2/(МБк⋅ч);
R - расстояние от точечного источника до ионизируемого объекта, см;
А - активность источника, кБк; изменяя расстояние до источника или его активность, получают градуировочную характеристику - зависимость счета от мощности дозы для каждого выбранного интервала энергии фотонов N=f(P), полученные зависимости аппроксимируют полиномом, степень полинома определяют максимальной близостью коэффициента корреляции к значению 1, определяют принадлежность излучения к одной из зон, по счету импульсов N в этой зоне определяют мощность эквивалентной дозы.
2. Устройство для измерения мощности эквивалентной дозы, содержащее блок питания и управления, блок детектирования, включающий в себя неорганический сцинтиллятор, соединенный с ним фотоэлектронный умножитель, сопряженный с зарядочувствительным усилителем, соединенным с дискриминатором нижнего уровня, высоковольтный блок питания со схемой управления, высоковольтный делитель, светодиод со схемой управления, микропроцессор, отличающееся тем, что дополнительно содержит два ключа №1, №2 и схему управления ими, первый выход схемы управления подключен к ключу №1, второй - к ключу №2, выход ключей соединен с пиковым детектором, а он соединен с отградуированным по энергии фотонов аналого-цифровым преобразователем.
Способ измерения параметров поля ионизирующего излучения и устройство для его осуществления | 1991 |
|
SU1806385A3 |
Блок детектирования эквивалентной дозы смешанного гамма-нейтронного излучения | 1986 |
|
SU1367721A1 |
US 8810416 B2, 19.08.2014 | |||
US 4101769 A1, 18.07.1978 | |||
US 8416401 B2, 09.04.2013. |
Авторы
Даты
2018-04-17—Публикация
2016-12-30—Подача