СПОСОБ ПРЕДУПРЕЖДЕНИЯ ЯЗЫКООБРАЗОВАНИЯ ПОДОШВЕННЫХ ВОД В ГОРИЗОНТАЛЬНОЙ СКВАЖИНЕ МАЛОЙ ПРОТЯЖЕННОСТИ Российский патент 2018 года по МПК E21B43/32 

Описание патента на изобретение RU2651829C1

Изобретение относится к нефтедобывающей промышленности, а именно к способу предупреждения притока подошвенных вод (возникновение явления языкообразования) в горизонтальном участке нефтедобывающей скважины протяженностью до 100 м.

Известно, что в вертикальных скважинах имеет место возникновения явления конусообразования. При эксплуатации нефтяных залежей, подстилаемых подошвенными водами, темп отбора нефти обусловливается деформацией контактов «нефть-вода» и прорыву пластовой воды к забоям нефтедобывающих скважин. При этом весьма важным параметром при установлении режима работы скважин и прогнозировании технологических показателей разработки является анизотропия пласта, обоснование которой необходимо для каждой конкретной залежи. Низкая проницаемость (т.е. высокая анизотропия) по вертикали препятствует быстрому поднятию вершины конуса подошвенных вод и способствует выполаживанию поверхности раздела «нефть-вода». Высокая же проницаемость по вертикали (т.е. малая анизотропия) способствует быстрому продвижению вершины конуса к забою скважины, что обусловливает концентрированную деформацию поверхности раздела вблизи скважины с низким коэффициентом охвата вытеснения нефти подошвенной водой [Клещенко И.И. Теория и практика ремонтно-изоляционных работ в нефтяных и газовых скважинах: учебное пособие / И.И. Клещенко, Г.П. Зозуля, А.К. Ягафаров. - Тюмень, ТюмГНГУ - 2010. - 340 с.].

Что касается горизонтальных скважин, то данное явление называется языкообразованием, когда формирующийся конус воды практически полностью охватывает перфорированную часть скважины. В скважинах такого типа путем применения изоляции в прискважинной зоне, распространяющейся на значительные расстояния вверх и вниз по стволу, можно, по крайней мере, замедлить такой процесс [Билл Бейли. Диагностика и ограничение водопритоков / Билл Бейли, Майк Крабтри, Джеб Тайри и др. // Нефтегазовое обозрение. - 2001. - Весна - С. 44-67.].

Известен способ предупреждения образования конусов подошвенных вод при эксплуатации многозабойных скважин в нефтяной залежи с активной подошвенной водой [Сохошко С.К. и др. Разработка водонефтяных зон горизонтальными многозабойными скважинами // Известия ВУЗов. Нефть и газ, 1, 1999, с. 9-13], предусматривающий бурение двух горизонтальных стволов в одной вертикальной плоскости, из которых один горизонтальный ствол располагают в нефтенасыщенной части пласта, а второй - в водонасыщенной части ниже водонефтяного контакта. Дебиты обоих стволов при этом необходимо устанавливать такими, чтобы не нарушить уровень водонефтяного контакта.

Недостатком такого способа является необходимость строгого контроля дебитов верхнего и нижнего горизонтальных стволов, иначе возникает риск нарушения уровня водонефтяного контакта и поступления подошвенной воды в горизонтальный ствол, расположенный в нефтенасыщенной части пласта.

Известен способ изоляции пластовых вод в горизонтальных нефтяных скважинах, предусматривающий два варианта [Патент РФ №2182965].

По первому варианту способ изоляции пластовых вод в горизонтальных нефтяных скважинах, предусматривающий бурение многозабойной нефтяной скважины с горизонтальными стволами в одной вертикальной плоскости, из которых один горизонтальный ствол располагают в нефтенасыщенной части пласта, а второй горизонтальный ствол - в водонасыщенной части ниже водонефтяного контакта. После этого производят зарезку третьего горизонтального ствола на уровень водонефтяного контакта между имеющимися стволами, при этом дебиты стволов устанавливают такими, чтобы воронка депрессии, создаваемая каждым стволом, не достигала близлежащего ствола.

По второму варианту способ изоляции пластовых вод в горизонтальных нефтяных скважинах, предусматривающий бурение многозабойной нефтяной скважины с горизонтальными стволами в одной вертикальной плоскости, из которых один горизонтальный ствол располагают в нефтенасыщенной части пласта, второй горизонтальный ствол - в водонасыщенной зоне пласта. После этого производят зарезку третьего горизонтального ствола в переходной зоне вода - нефть между имеющимися стволами, при этом дебит среднего ствола устанавливают таким, чтобы воронка депрессии, создаваемая им, охватывала всю переходную зону по высоте.

Недостатками обоих рассматриваемых вариантов является сложность и дороговизна предлагаемых технологических мероприятий, связанных с бурением дополнительных горизонтальных стволов на уровне водонефтяного контакта, а также необходимость строгого контроля дебитов горизонтальных стволов для регулирования воронки депрессии.

Задача изобретения состоит в повышении эффективности предупреждения языкообразования подошвенных вод в горизонтальном участке нефтедобывающей скважины малой протяженностью (до 100 м) с сохранением нефтенасыщенной толщины пласта.

Достигаемый технический результат, который получается в результате создания изобретения, состоит в создании водоизоляционного экрана, равного по длине горизонтальному участку нефтедобывающей скважины (до 100 м), а также отсрочки времени обводнения скважины.

Новизна изобретения заключается в применении радиальной перфорации на уровне водонефтяного контакта, бурении радиального канала параллельно горизонтальному участку добывающей скважины малой протяженности (до 100 м), применении его в качестве направляющей для закачивания водоизоляционного состава на основе микроцемента и создании прочного водоизоляционного экрана, способного предотвратить приток подошвенных вод к перфорированной части горизонтального участка скважины.

Поставленная задача и технический результат достигаются тем, что способ предупреждения языкообразования подошвенных вод в горизонтальной скважине малой протяженности (до 100 м) включает углубление основного (вертикального) ствола скважины до глубины на 1-2 м ниже уровня водонефтяного контакта, спуск в пробуренный интервал обсадной колонны, диаметр которой меньше основного вертикального участка скважины, цементирование обсадной колонны, ожидание времени затвердевания цемента, спуск компоновки для радиального бурения (радиальной перфорации), бурение радиального канала длиной, равной длине горизонтального ствола, но не более 100 м, закачивание под давлением в этот канал водоизоляционного состава на основе микроцемента с образованием водоизоляционного экрана, докрепление закачанного состава цементным раствором с оставлением цементного стакана, устанавливаемого в добуриваемом (вертикальном) стволе скважины, оставление скважины на период ожидания затвердевания цемента, освоение и запуск скважины в эксплуатацию через имеющиеся перфорационные отверстия в горизонтальном участке. При этом в качестве водоизоляционного состава предлагается использовать состав, включающий микродур R-U, полифункциональный модификатор PFM-ISO, суперпластификатор F-10 и воду при водоцементном отношении 1 при следующем соотношении компонентов, мас. %: микродур R-U 48,75-49,05, полифункциональный модификатор PFM-ISO 1,0-1,2, суперпластификатор F-10 0,9-1,3, вода - остальное [Патент РФ №2613067. Состав для ремонтно-изоляционных работ в скважинах / Леонтьев Д.С., Кустышев А.В., Клещенко И.И. и др.].

Взаимное влияние компонентов друг на друга, их синергетическое действие в предложенном составе позволяет за счет реакции и отверждения в пластовых условиях образовывать прочный камнеобразный материал.

Состав можно применять для водоизоляции и крепления коллекторов с низкими фильтрационно-емкостными свойствами, поскольку он закачивается в пласт в виде маловязкого раствора, что и позволяет его прокачивать в радиальный канал.

Способ реализуется следующим образом.

С целью предупреждения возникновения явления языкообразования подстилаемых подошвенных вод (1) горизонтальную скважину (2), вскрывшей нефтенасыщенную часть пласта (3) и добывающую нефть через перфорационные отверстия (4) (фиг. 1), останавливают. Спускают бурильный инструмент с долтом (не показано) и добуривают основной ствол (углубляют) скважины по вертикали (5) до глубины на 1-2 м ниже уровня водонефтяного контакта (6), спускают в пробуренный интервал (5) обсадную колонну (7), диаметр которой меньше основного вертикального участка скважины, цементируют и проводят ОЗЦ (ожидание затвердевания цемента) (7) (фиг. 2), спускают на бурильных трубах (8) направляющую компоновку для радиального бурения (9) со сквозным каналом и выходным отверстием в комплекте с якорно-пакерующим устройством и устанавливают в обсадную колонну (7) так, чтобы выход отверстия направляющей компоновки (9) был на уровне водонефтяного контакта и в направлении, параллельном горизонтальному участку ствола нефтедобывающей скважины (фиг. 3). Якорно-пакерующее устройство позволяет установить, закрепить и загерметизировать направляющую компоновку (9) в эксплуатационной колонне (7). После этого из скважины извлекают колонну бурильных труб (8) с оставлением в эксплуатационной колонне (7) направляющей компоновки (9) для радиального бурения. В направляющую компоновку (9) спускают на гибкой трубе (10) посредством переводного рукава высокого давления (не показано) гидромониторную насадку до выходного отверстия сквозного отверстия направляющей компоновки. Струями песчано-жидкостной смеси, состоящей из песка и раствора на углеводородной основе (например, нефти) прорезают в стенке эксплуатационной колонны (7) отверстие (не показано). После прорезания в стенке эксплуатационной колонны (7) отверстия песчано-жидкостеную смесь заменяют на раствор на углеводородной основе и струями под высоким давлением размывают цементный камень за эксплуатационной колонной (7) и последующим перемещением гидромониторной насадки в радиальном направлении размывают горную породу продуктивного пласта (фиг. 4) с образованием радиального канала (11) длиной, равной длине горизонтального ствола, но не более 100 м (фиг. 5). После этого извлекают гибкую трубу (10), направляющую компоновку (9), спускают колонну насосно-компрессорных труб или гибких труб на глубину пробуренного радиального канала и закачивают под давлением в этот канал (11) тампонажный состав с образованием водоизоляционного экрана (13), докрепляют закачанный тампонажный состав цементным раствором с оставлением цементного стакана (14), устанавливаемого в добуриваемом вертикальном стволе скважины (6). Оставляют скважину на период ожидания затвердевания цемента, осваивают и запускают скважину в эксплуатацию через имеющиеся перфорационные отверстия (4) в горизонтальном участке (2) (фиг. 6).

Предлагаемый способ предупреждения языкообразования подошвенных вод в горизонтальной скважине малой протяженности (до 100 м) позволяет продлить безводный период эксплуатации скважины, отсрочив неизбежное обводнения скважины.

Обозначения:

1 - подошвенная вода;

2 - горизонтальный участок скважины;

3 - нефтенасыщенная часть пласта;

4 - перфорационные отверстия;

5 - добуренный ствол;

6 - водонефтяной контакт;

7 - спущенная и зацементированная обсадная колонна;

8 - бурильная труба;

9 - направляющая компоновка для радиального бурения;

10 - гибкая труба;

11 - радиальный канал;

12 - радиальный канал, добуренный до 100 м;

13 - водоизоляционный экран;

14 - цементный стакан.

Похожие патенты RU2651829C1

название год авторы номер документа
СПОСОБ ПРЕДОТВРАЩЕНИЯ ПРИТОКА ПЛАСТОВЫХ ВОД В СКВАЖИНЕ, ВСКРЫВШЕЙ ВОДОНЕФТЯНУЮ ЗАЛЕЖЬ 2017
  • Леонтьев Дмитрий Сергеевич
  • Клещенко Иван Иванович
  • Леонтьева Наталья Алексеевна
  • Ваганов Юрий Владимирович
  • Семененко Анастасия Федоровна
  • Балуев Анатолий Андреевич
RU2665769C1
Способ проведения водоизоляционных работ в добывающей скважине, вскрывшей водонефтяную залежь 2017
  • Леонтьев Дмитрий Сергеевич
  • Клещенко Иван Иванович
  • Леонтьева Наталья Алексеевна
  • Пономарев Андрей Александрович
  • Александров Вадим Михайлович
RU2661935C1
СПОСОБ ИЗОЛЯЦИИ ПРИТОКА ПОДОШВЕННЫХ ВОД В СКВАЖИНЕ 2014
  • Леонтьев Дмитрий Сергеевич
  • Кустышев Александр Васильевич
  • Паникаровский Евгений Валентинович
RU2564704C1
СПОСОБ ИЗОЛЯЦИИ ГАЗА, ПОСТУПАЮЩЕГО ИЗ ГАЗОВОЙ ШАПКИ В НЕФТЯНУЮ ЗАЛЕЖЬ 2015
  • Леонтьев Дмитрий Сергеевич
  • Кустышев Александр Васильевич
  • Клещенко Иван Иванович
  • Сипина Наталья Алексеевна
  • Паникаровский Евгений Валентинович
  • Козлов Евгений Николаевич
RU2608103C1
СОСТАВ ДЛЯ РЕМОНТНО-ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНАХ 2015
  • Леонтьев Дмитрий Сергеевич
  • Кустышев Александр Васильевич
  • Клещенко Иван Иванович
  • Ягафаров Алик Каюмович
  • Жапарова Дарья Владимировна
  • Сипина Наталья Алексеевна
  • Бакин Дмитрий Александрович
  • Хачатурян Давид Владимирович
  • Пономарев Андрей Александрович
RU2613067C1
СПОСОБ ИЗОЛЯЦИИ ПРИТОКА ПОДОШВЕННЫХ ВОД В НЕФТЯНЫХ СКВАЖИНАХ 2015
  • Клещенко Иван Иванович
  • Леонтьев Дмитрий Сергеевич
  • Сипина Наталья Алексеевна
  • Кичикова Дарья Владимировна
  • Попова Жанна Сергеевна
  • Анкудинов Александр Анатольевич
RU2588582C1
СПОСОБ ИЗОЛЯЦИИ КОНУСА ПОДОШВЕННЫХ ВОД В ГАЗОДОБЫВАЮЩЕЙ СКВАЖИНЕ 2020
  • Леонтьев Дмитрий Сергеевич
  • Цилибин Владислав Витальевич
  • Бакирова Аделя Данияровна
RU2726668C1
СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКА В НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЕ 2017
  • Леонтьев Дмитрий Сергеевич
  • Клещенко Иван Иванович
  • Сипина Наталья Алексеевна
  • Касов Артем Михайлович
RU2655495C1
СПОСОБ ИЗОЛЯЦИИ ПРИТОКА ПЛАСТОВЫХ ВОД В НЕОБСАЖЕННОМ ГОРИЗОНТАЛЬНОМ УЧАСТКЕ СТВОЛА НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ 2017
  • Леонтьев Дмитрий Сергеевич
  • Клещенко Иван Иванович
  • Ягафаров Алик Каюмович
  • Леонтьева Наталья Алексеевна
  • Жигалковская Мария Игоревна
  • Спехова Светлана Александровна
  • Жапарова Дарья Владимировна
RU2661171C1
СПОСОБ ОТСЕЧЕНИЯ КОНУСА ПОДОШВЕННОЙ ВОДЫ 2016
  • Леонтьев Дмитрий Сергеевич
  • Клещенко Иван Иванович
  • Ягафаров Алик Каюмович
  • Долгушин Владимир Алексеевич
  • Водорезов Дмитрий Дмитриевич
  • Земляной Александр Андреевич
  • Сипина Наталья Алексеевна
  • Жапарова Дарья Владимировна
RU2655490C2

Иллюстрации к изобретению RU 2 651 829 C1

Реферат патента 2018 года СПОСОБ ПРЕДУПРЕЖДЕНИЯ ЯЗЫКООБРАЗОВАНИЯ ПОДОШВЕННЫХ ВОД В ГОРИЗОНТАЛЬНОЙ СКВАЖИНЕ МАЛОЙ ПРОТЯЖЕННОСТИ

Изобретение относится к нефтедобывающей промышленности и позволяет решить задачу предупреждения притока подошвенных вод в горизонтальном участке нефтедобывающей скважины малой протяженности. Способ предупреждения языкообразования подошвенных вод в горизонтальной скважине малой протяженности (до 100 м) содержит следующие последовательные стадии. Сначала углубляют основной (вертикальный) ствол скважины до глубины на 1-2 м ниже уровня водонефтяного контакта. Затем спускают в пробуренный интервал обсадную колонну, диаметр которой меньше основного вертикального участка скважины. После этого цементируют обсадную колонну и ожидают затвердевания цемента. Затем спускают компоновку для радиального бурения (радиальной перфорации) и бурят радиальный канал длиной не более 100 м. Далее закачивают под давлением в этот канал водоизоляционный состав на основе микроцемента с образованием водоизоляционного экрана. Вслед за этим докрепляют закачанный состав цементным раствором с оставлением цементного стакана, устанавливаемого в добуриваемом (вертикальном) стволе скважины. Дальше скважину оставляют на период ожидания затвердевания цемента. Освоение и запуск скважины в эксплуатацию проводят через имеющиеся перфорационные отверстия в горизонтальном участке. В качестве водоизоляционного состава используют состав, включающий микродур R-U, полифункциональный модификатор PFM-ISO, суперпластификатор F-10 и воду при водоцементном отношении 1 и при следующем соотношении компонентов, мас. %: микродур R-U 48,75-49,05, полифункциональный модификатор PFM-ISO 1,0-1,2, суперпластификатор F-10 0,9-1,3, вода - остальное. Предлагаемый способ позволяет продлить безводный период эксплуатации скважины. 6 ил.

Формула изобретения RU 2 651 829 C1

Способ предупреждения языкообразования подошвенных вод в горизонтальной скважине малой протяженности (до 100 м) включает углубление основного (вертикального) ствола скважины до глубины на 1-2 м ниже уровня водонефтяного контакта, спуск в пробуренный интервал обсадной колонны, диаметр которой меньше основного вертикального участка скважины, цементирование обсадной колонны, ожидание времени затвердевания цемента, спуск компоновки для радиального бурения (радиальной перфорации), бурение радиального канала длиной, равной длине горизонтального ствола, но не более 100 м, закачивание под давлением в этот канал водоизоляционного состава на основе микроцемента с образованием водоизоляционного экрана, докрепление закачанного состава цементным раствором с оставлением цементного стакана, устанавливаемого в добуриваемом (вертикальном) стволе скважины, оставление скважины на период ожидания затвердевания цемента, освоение и запуск скважины в эксплуатацию через имеющиеся перфорационные отверстия в горизонтальном участке, при этом в качестве водоизоляционного состава предлагается использовать состав, включающий микродур R-U, полифункциональный модификатор PFM-ISO, суперпластификатор F-10 и воду при водоцементном отношении 1 при следующем соотношении компонентов, мас. %: микродур R-U 48,75-49,05, полифункциональный модификатор PFM-ISO 1,0-1,2, суперпластификатор F-10 0,9-1,3, вода - остальное.

Документы, цитированные в отчете о поиске Патент 2018 года RU2651829C1

СПОСОБ ИЗОЛЯЦИИ ПРИТОКА ПОДОШВЕННЫХ ВОД В СКВАЖИНЕ 2014
  • Леонтьев Дмитрий Сергеевич
  • Кустышев Александр Васильевич
  • Паникаровский Евгений Валентинович
RU2564704C1
СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКА ИЛИ ГАЗОПРИТОКА ИЛИ ЗОН ПОГЛОЩЕНИЯ 2002
  • Дыбленко В.П.
  • Туфанов И.А.
  • Овсюков А.В.
  • Сулейманов Г.А.
RU2228437C2
СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКА 2010
  • Паникаровский Евгений Валентинович
  • Паникаровский Валентин Васильевич
  • Шуплецов Владимир Аркадьевич
  • Горлов Иван Владимирович
  • Кузьмич Андрей Александрович
  • Паникаровский Василий Валентинович
  • Бакланов Владимир Петрович
RU2456431C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ, ПОДСТИЛАЕМОЙ ВОДОЙ 2015
  • Хисамов Раис Салихович
  • Галимов Илья Фанусович
  • Сайфутдинов Марат Ахметзиевич
  • Фаткуллин Рашат Хасанович
  • Миронова Любовь Михайловна
RU2592920C1
CN 102071903 A, 25.05.2011
ЗЕМЛЯНОЙ А.А., Совершенствование методов изоляции водопритоков в скважинах с горизонтальными окончаниями, диссертация, Уфа-2016, с
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1

RU 2 651 829 C1

Авторы

Леонтьев Дмитрий Сергеевич

Клещенко Иван Иванович

Леонтьева Наталья Алексеевна

Пономарев Андрей Александрович

Даты

2018-04-24Публикация

2017-06-05Подача