Способ исследования низкопроницаемых коллекторов с минимальными потерями в добыче Российский патент 2018 года по МПК E21B49/00 E21B47/06 G06G7/48 

Описание патента на изобретение RU2652396C1

Настоящее изобретение относится к области нефтедобывающей промышленности и может быть использовано для определения фильтрационно-емкостных свойств низкопроницаемых пластов.

Известны способы определения пластового давления и коэффициента продуктивности скважин, основанные на экспериментальных методах восстановления давления и установившихся отборов (Щелкачев В.В. Разработка нефтеводоносных пластов при упругом режиме / Под ред. д.т.н. Ш.К. Гиматудинова. М.: Недра, 1974).

К недостаткам данного типа исследований относится их большая продолжительность.

При исследованиях на неустановившемся режиме за искомый параметр принимается давление после окончания процесса исследования на восстановление (падение) давления. Время стабилизации давления в значительной степени зависит от коллекторских свойств пласта. Для скважин со средними и низкими дебитами (приемистостями) исследования этого типа также являются длительными. Продолжительная остановка скважин ведет к потерям в добыче нефти и увеличению эксплуатационных затрат.

Известен способ определения пластового давления в добывающих и нагнетательных скважинах (АС СССР №1265303 А1, МПК Е21В 47/06, опубл. 23.10.1986), включающий закрытие скважины, регистрацию кривой восстановления давления, а также определение по формулам минимально необходимого времени закрытия скважины и пластового давления. Техническим результатом изобретения является уменьшение времени простоя скважины при исследовании. Однако для расчета пластового давления авторами используется основная формула упругого режима, которая справедлива только для определенных допущений. В частности, не учитывается влияние на кривую интерференции соседних скважин, которые изменяют динамику восстановления (падения) давления.

Также известен способ определения пластового давления в нефтяной скважине (патент РФ №2167289, МПК Е21В 47/06, опубл. БИ №14, 2001). Способ включает остановку скважины, снятие при помощи глубинного манометра кривой восстановления давления, а также текущего приращения давления на начальном участке кривой для некоторой выбранной функции и последующей ее экстраполяции до момента времени, при котором разность давлений будет равна нулю. Достоинством способа является снижение потерь добычи нефти за счет уменьшения времени снятия кривой восстановления давления.

К недостаткам относится погрешность, возникающая при экстраполяции функции за пределы интервала значений, внутри которого определялись коэффициенты функции. В связи с этим значения пластовых давлений, определенные данным способом, содержат ошибку, увеличивающуюся с уменьшением времени снятия кривой.

Известны способы определения параметров пласта и пластового давления по методу кривых восстановления давления (Ипатов А.И., Кременецкий М.И. Геофизический и гидродинамический контроль разработки месторождений углеводородов / М.: НИЦ «Регулярная и хаотическая динамика»; Институт компьютерных исследований, 2005. - 708 с.). Метод предполагает достижение радиального режима притока к скважине и его дальнейший анализ. В полулогарифмических координатах определяют наклон прямолинейного участка, а также вычисляют экстраполированное давление и оценивают параметры пласта. Используя различные подходы (метод Хорнера, метод МБХ, метод МДХ и т.п.) в зависимости от периода работы скважины и системы разработки, рассчитывают среднее пластовое давление. Достоинством способа является сокращение длительности исследования (отсутствие необходимости дожидаться восстановления давления), хорошая точность в получаемых параметрах. Недостатком метода является значительное время ожидания выхода на псевдорадиальный режим притока в условиях низкопроницаемых пластов при наличии трещины ГРП или горизонтальном типе заканчивания скважины.

Также известен способ определения параметров пласта, называемый анализом падения добычи (Ипатов А.И., Кременецкий М.И. Геофизический и гидродинамический контроль разработки месторождений углеводородов / М.: НИЦ «Регулярная и хаотическая динамика»; Институт компьютерных исследований, 2005. - 708 с). Суть подхода заключается в интерпретации кривых изменения дебита и давления при заданном начальном пластовом давлении. Это позволяет определить ФЕС пласта, параметры заканчивания скважины и расстояние до границ пласта. Достоинством метода является отсутствие необходимости остановки скважины, следовательно, возможность долговременного анализа эксплуатации скважины и отсутствие потерь в добыче. Недостатком метода является невозможность определения пластового давления на текущий момент, а также необходимость точного знания пластового давления на момент начала анализа.

Техническим результатом изобретения является повышение эффективности существующих методов исследования скважин, а также снижение потерь добычи при исследовании скважин методом кривой восстановления давления.

Поставленный результат достигается с помощью предлагаемого способа исследования низкопроницаемых коллекторов, включающего регистрацию дебита и забойного давления скважины в течение длительного периода работы скважины (не менее 6 месяцев), остановку скважины с регистрацией кривой восстановления давления, интерпретацию данных периода работы скважины, анализа добычи/давления до получения наилучшего совмещения и интерпретацию кривой восстановления давления. При этом интерпретация кривой восстановления давления и анализ добычи/давления выполняются совместно и циклически (рис. 1) до получения наилучшего совмещения кривой восстановления давления в остановленной скважине и кривой падения добычи/давления периода работы скважины с их теоретическими кривыми. При этом кривая восстановления давления является «недослеженной» (без выхода на псевдорадиальный режим притока). Интерпретация «недослеженной» кривой восстановления давления производится путем варьирования всех параметров, определяемых на ранних и средних временах и пластового давления, а значение проницаемости изменяется в узком диапазоне по первому циклу анализа добычи/давления. В свою очередь анализ добычи выполняется с варьируемыми в узком диапазоне параметрами, определяемыми на ранних и средних временах по интерпретации «недослеженной» кривой восстановления давления и варьированием значения проницаемости и пластового давления. Начальное пластовое давление при анализе добычи/давления может быть определено на основании совместной интерпретации «недослеженной» КВД и анализа добычи.

Предложенный подход имеет аналогию с методом покоординатного спуска в решении нелинейных оптимизационных задач. Суть подхода заключается в определении параметров, которые диагностируются на поздних временах (проводимость пласта, пластовое давление и т.д.) по данным снижения добычи/давления при эксплуатации скважины, а параметры, диагностируемые на ранних временах (скин-фактор, проводимость и полудлина трещины ГРП), определяют по «недослеженной» кривой восстановления давления. При этом параметры, определяемые по анализу добычи/давления на первом этапе интерпретации, фиксируются при анализе «недослеженных» кривых восстановления давления на втором этапе либо ограничиваются в узком диапазоне.

Произведен анализ чувствительности результатов совместного анализа добычи/давления и «недослеженной» кривой восстановления давления на длительность кривой восстановления давления. Были рассмотрены случаи с длительностью кривой восстановления давления от 1 до 5% от времени выхода на псевдорадиальный режим течения tKBД. Время выхода на псевдорадиальный режим течения tКВД рассчитывалось по формуле:

где ; и

Результаты интерпретации всех этих синтетических случаев приведены в табл. 1 и рисунке 2.

На основе анализа большого количества синтетических кривых периода работы скважины и «недослеженных» кривых восстановления давления с различными параметрами пласта, типами заканчивания скважин установлено, что минимальная необходимая длительность «недослеженной» кривой восстановления давления должна составлять не менее 3% от времени выхода на псевдорадиальный режим притока tКВД, а также не менее времени влияния объема ствола скважины tBCC (ВСС). Следует отметить, что ограничение 3% от длительности кривой восстановления давления, необходимой для диагностирования псевдорадиального режима течения, является критерием, пригодным для всех типов скважин при любых параметрах пласта. Для некоторых пластов/скважин, возможно, что и при меньших длительностях кривой восстановления давления будет возможен анализ данных с достаточным качеством получаемых параметров, однако рекомендуется придерживаться предлагаемого критерия. Для расчета длительности кривой восстановления давления при совместном анализе предлагается следующая формула:

По результатам проведенного анализа установлено, что ошибка в определении начального пластового давления и параметров пласта при применении предлагаемой методики составляет менее 5%.

На рис. 3-6 приведен пример практической реализации предлагаемого способа. Забойное давление в скважине регистрировалось стационарным датчиком давления. Производились каждодневные замеры дебита скважины. За период прослеживания трижды скважина останавливалась и прослеживались кривые восстановления давления, длительность которых была недостаточной для выхода на псевдорадиальный режим притока (рис. 3). На рис. 4 приведена предварительная интерпретация кривых падения добычи/давления. При этом периоды остановки скважины плохо совмещаются с теоретической кривой по давлению, а на поздних временах отсутствует совмещение по накопленному дебиту. Это вероятнее всего связано с ошибкой в заданном начальном пластовом давлении.

Диагностический график кривой восстановления давления в log-log координатах, при параметрах, полученных анализу добыч/давления, представлен на рис. 5а. Из этого рисунка видно, что совмещение теоретических и замеренных кривых отсутствует, что говорит о неверно подобранных параметрах пласта. После интерпретации цикла кривой восстановления давления получено удовлетворительное совмещение на log-log графике (рис. 5б). Путем совместной интерпретации по предложенному способу было получено полное совмещение данных по дебиту/давлению и кривых восстановления давления (рис. 6).

Результаты совместной интерпретации «недослеженной» кривой восстановления давления и анализа добычи/давления приведены в табл. 2. Стоит отметить, что проницаемость пласта подтверждена результатами интерпретации ГДИС методом кривой восстановления давления (до ГРП) в соседней скважине.

Таким образом, использование предложенного способа позволяет определять величину начального пластового давления, параметры пласта и заканчивания скважины (в т.ч. проводимость и длину трещины ГРП), не дожидаясь выхода скважины на псевдорадиальный режим притока.

Использование заявленного способа по сравнению с известными способами позволит повысить достоверность определения параметров пласта, а также сократить длительность остановки скважины по сравнению с классическим прослеживанием кривой восстановления давления на 97%, вследствие чего значительно сократить потери в добыче.

Похожие патенты RU2652396C1

название год авторы номер документа
Способ исследования горизонтальных скважин с многостадийным гидравлическим разрывом пласта в низкопроницаемых коллекторах 2019
  • Давлетбаев Альфред Ядгарович
  • Нуриев Артур Хамитович
  • Махота Николай Александрович
  • Иващенко Дмитрий Сергеевич
  • Асалхузина Гузяль Фаритовна
  • Синицкий Алексей Игоревич
  • Зарафутдинов Ильнур Анифович
  • Сарапулова Вероника Владимировна
  • Уразов Руслан Рубикович
  • Мухамедшин Рустем Камилевич
RU2734202C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ДЛИТЕЛЬНОСТИ РЕГИСТРАЦИИ КРИВОЙ ВОССТАНОВЛЕНИЯ ДАВЛЕНИЯ СКВАЖИНЫ 2019
  • Жариков Максим Геннадиевич
  • Стадник Виталий Валентинович
  • Голованов Антон Сергеевич
  • Шишацкий Дмитрий Евгеньевич
  • Шарафутдинов Руслан Фархатович
  • Долгих Юрий Александрович
RU2722900C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ПРОДОЛЖИТЕЛЬНОСТИ ПЕРИОДА ПРОВЕДЕНИЯ ГИДРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ НИЗКОПРОДУКТИВНЫХ СКВАЖИН 2021
  • Мартюшев Дмитрий Александрович
  • Пономарева Инна Николаевна
RU2774380C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЛЬТРАЦИОННЫХ ПАРАМЕТРОВ ПЛАСТА 2011
  • Барышников Андрей Владимирович
  • Ипатов Андрей Иванович
  • Кременецкий Михаил Израилевич
  • Гуляев Данила Николаевич
  • Кокурина Валентина Владимировна
  • Мельников Сергей Игоревич
RU2476669C1
Способ определения фильтрационных параметров в многоскважинной системе методом Импульсно-Кодового Гидропрослушивания (ИКГ) 2016
  • Фарахова Рушания Ринатовна
  • Васильев Георгий Валентинович
RU2666842C1
Способ интерпретации краткосрочных гидродинамических исследований горизонтальных скважин и скважин с гидроразрывом пласта на неустановившемся режиме фильтрации 2018
  • Коваленко Игорь Викторович
RU2731013C2
СПОСОБ РАЗРАБОТКИ ГАЗОВЫХ ЗАЛЕЖЕЙ В НИЗКОПРОНИЦАЕМЫХ КРЕМНИСТЫХ ОПОКОВИДНЫХ КОЛЛЕКТОРАХ 2020
  • Гордеев Александр Олегович
  • Меликов Руслан Фуадович
  • Калабин Артемий Александрович
  • Лознюк Олег Анатольевич
  • Шайбаков Равиль Артурович
  • Королев Александр Юрьевич
  • Габуния Георгий Борисович
RU2745640C1
Способ построения геологических и гидродинамических моделей месторождений нефти и газа 2020
  • Арефьев Сергей Валерьевич
  • Шестаков Дмитрий Александрович
  • Юнусов Радмир Руфович
  • Балыкин Андрей Юрьевич
  • Мединский Денис Юрьевич
  • Шаламова Валентина Ильинична
  • Вершинина Ирина Викторовна
  • Гильманова Наталья Вячеславовна
  • Коваленко Марина Александровна
RU2731004C1
Способ определения гидродинамической связи между участками продуктивного пласта и фильтрационно-емкостных свойств межскважинного пространства сеноманской залежи при запуске промысла после остановок по результатам интегрального гидропрослушивания на скважинах 2023
  • Востриков Андрей Алексеевич
  • Гадеев Кирилл Владимирович
  • Касьяненко Андрей Александрович
  • Кряжев Всеволод Александрович
  • Кущ Иван Иванович
  • Лысов Андрей Олегович
  • Меркулов Анатолий Васильевич
  • Моисеев Виктор Владимирович
  • Мурзалимов Заур Уразалиевич
  • Свентский Сергей Юрьевич
  • Хасанянов Рустам Разифович
RU2819121C1
Способ определения фильтрационно-емкостных свойств межскважинного интервала пласта 2020
  • Двинских Кристина Викторовна
RU2747959C1

Иллюстрации к изобретению RU 2 652 396 C1

Реферат патента 2018 года Способ исследования низкопроницаемых коллекторов с минимальными потерями в добыче

Изобретение относится к области нефтедобывающей промышленности и может быть использовано для определения фильтрационно-емкостных свойств низкопроницаемых пластов. Техническим результатом изобретения является повышение эффективности методов исследования скважин, а также снижение потерь добычи при исследовании скважин методом кривой восстановления давления. Способ включает регистрацию дебита и забойного давления скважины в течение длительного периода работы скважины, остановку скважины с регистрацией кривой восстановления давления, интерпретацию данных периода работы скважины, анализ добычи/давления до получения наилучшего совмещения и интерпретацию кривой восстановления давления. При этом интерпретация кривой восстановления давления и анализ добычи/давления выполняются совместно и циклически до получения наилучшего совмещения кривой восстановления давления в остановленной скважине, кривой падения добычи/давления периода работы скважины с их теоретическими кривыми, при этом кривая восстановления давления является «недослеженной», интерпретация «недослеженной» кривой восстановления давления производится путем варьирования всех параметров, определяемых на ранних и средних временах и пластового давления, а значение проницаемости изменяется в узком диапазоне по первому циклу анализа добычи/давления, в свою очередь анализ добычи выполняется с варьируемыми в узком диапазоне параметрами, определяемыми на ранних и средних временах по интерпретации «недослеженной» кривой восстановления давления и варьированием значения проницаемости и пластового давления. 1 з.п. ф-лы, 2 табл., 6 ил.

Формула изобретения RU 2 652 396 C1

1. Способ исследования низкопроницаемых коллекторов, включающий регистрацию дебита и забойного давления скважины в течение длительного периода работы скважины, остановку скважины с регистрацией кривой восстановления давления, интерпретацию данных периода работы скважины, анализ добычи/давления до получения наилучшего совмещения и интерпретацию кривой восстановления давления, отличающийся тем, что интерпретация кривой восстановления давления и анализ добычи/давления выполняются совместно и циклически до получения наилучшего совмещения кривой восстановления давления в остановленной скважине, кривой падения добычи/давления периода работы скважины с их теоретическими кривыми, при этом кривая восстановления давления является «недослеженной», интерпретация «недослеженной» кривой восстановления давления производится путем варьирования всех параметров, определяемых на ранних и средних временах и пластового давления, а значение проницаемости изменяется в узком диапазоне по первому циклу анализа добычи/давления, в свою очередь анализ добычи выполняется с варьируемыми в узком диапазоне параметрами, определяемыми на ранних и средних временах по интерпретации «недослеженной» кривой восстановления давления и варьированием значения проницаемости и пластового давления.

2. Способ исследования низкопроницаемых коллекторов по п. 1, отличающийся тем, что начальное пластовое давление при анализе добычи/давления может быть определено на основании совместной интерпретации «недослеженной» кривой восстановления давления и анализа добычи.

Документы, цитированные в отчете о поиске Патент 2018 года RU2652396C1

ИПАТОВ А.И
и др., Геофизический и гидродинамический контроль разработки месторождений углеводородов, Москва, Регулярная и хаотическая динамика, Институт компьютерных исследований, 2005, с.708
Способ определения пластового давления в добывающих и нагнетательных скважинах 1984
  • Бучковский Станислав Степанович
SU1265303A1
СПОСОБ ЭКСПЛУАТАЦИИ СКВАЖИНЫ 2007
  • Хисамов Раис Салихович
  • Тазиев Миргазиян Закиевич
  • Таипова Венера Асгатовна
  • Шакиров Артур Альбертович
RU2320855C1
СПОСОБ ИССЛЕДОВАНИЯ НЕФТЕ- И ВОДОНАСЫЩЕННЫХ ПЛАСТОВ 1993
  • Вольпин Сергей Григорьевич
RU2061862C1
СПОСОБ ДИНАМИЧЕСКОЙ ОЦЕНКИ СООТВЕТСТВИЯ ТЕХНИЧЕСКИМ ТРЕБОВАНИЯМ НЕФТЯНОГО КОЛЛЕКТОРА И УВЕЛИЧЕНИЯ ДОБЫЧИ И НЕФТЕОТДАЧИ С ПОМОЩЬЮ АСИММЕТРИЧНОГО АНАЛИЗА ПОКАЗАТЕЛЕЙ РАБОТЫ 2011
  • Салери Нансен Г.
  • Торони Роберт М.
RU2571542C2
US 8116980 B2, 14.02.2012.

RU 2 652 396 C1

Авторы

Ишкин Динислам Закирович

Давлетбаев Альфред Ядгарович

Исламов Ринат Робертович

Нуриев Рустам Илдусович

Даты

2018-04-26Публикация

2017-02-15Подача