Область техники, к которой относится изобретение, и уровень техники
Настоящее изобретение относится к способу управления гибридной силовой передачей согласно преамбуле пункта 1 формулы изобретения. Изобретение также относится к транспортному средству, содержащему такую гибридную силовую передачу согласно преамбуле пункта 11 формулы изобретения, к электронному устройству управления такой гибридной силовой передачей согласно преамбуле пункта 12 формулы изобретения, и к компьютерному программному продукту, содержащему программный код.
Гибридные транспортные средства могут приводиться в движение посредством первичного двигателя, который может представлять собой двигатель внутреннего сгорания, и вторичного двигателя, который может представлять собой электрическую машину. Электрическая машина оснащена по меньшей мере одним устройством накопления энергии, таким как устройство накопления электрохимической энергии, для накопления электрической мощности, и управляющим оборудованием, чтобы управлять потоком электрической мощности между устройством накопления энергии и электрической машиной. Таким образом, электрическая машина может попеременно работать в качестве электромотора и в качестве генератора, в зависимости от рабочего режима транспортного средства. Когда транспортное средство тормозит, электрическая машина вырабатывает электрическую мощность, которая накапливается в устройстве накопления энергии. Это обычно упоминается в качестве рекуперативного торможения, которое влечет за собой то, что транспортное средство замедляется посредством электрической машины и двигателя внутреннего сгорания. Накопленная электрическая мощность используется позднее для работы транспортного средства.
Коробка передач в гибридном транспортном средстве может содержать планетарную передачу. Планетарная коробка передач
обычно содержит три компонента, которые размещаются с возможностью вращения относительно друг друга, а именно, солнечное зубчатое колесо, водило зубчатых колес планетарной передачи и внутреннюю коронную шестерню. При наличии сведений относительно числа зубьев в солнечном зубчатом колесе и внутренней коронной шестерне, взаимные скорости вращения трех компонентов могут определяться в ходе работы. Один из компонентов планетарной передачи может соединяться с выходным валом в двигателе внутреннего сгорания. Таким образом, этот компонент планетарной передачи вращается со скоростью вращения, соответствующей скорости вращения выходного вала в двигателе внутреннего сгорания. Второй компонент в планетарной передаче может соединяться с входным валом для трансмиссионного устройства. Таким образом, этот компонент планетарной передачи вращается со скоростью вращения, идентичной скорости вращения входного вала для трансмиссионного устройства. Третий компонент в планетарной передаче используется для достижения гибридного режима работы, соединен с ротором в электрической машине. Таким образом, этот компонент в планетарной передаче вращается со скоростью вращения, идентичной скорости вращения ротора электрической машины, если они непосредственно соединяются между собой. Альтернативно, электрическая машина может соединяться с третьим компонентом планетарной передачи через трансмиссию, которая имеет передаточное отношение. В этом случае, электрическая машина и третий компонент в планетарной передаче могут вращаться с различными частотами вращения. Скорость вращения двигателя и/или крутящий момент электрической машины могут управляться бесступенчато. В течение периодов работы, когда на входной вал для трансмиссионного устройства должна подаваться скорость вращения и/или крутящий момент двигателя, устройство управления, имеющее сведения относительно скорости вращения двигателя для двигателя внутреннего сгорания, вычисляет скорость вращения, с которой должен управляться третий компонент, для того, чтобы входной вал для трансмиссионного устройства получал требуемую скорость вращения. Устройство управления приводит в действие электрическую машину, так что она предоставляет в третий компонент вычисленную скорость вращения двигателя и, таким образом, во входной вал для трансмиссионного устройства требуемую скорость вращения.
В зависимости от конструкции коробки передач, соединенной с планетарной передачей, может не допускаться прерывание крутящего момента между ступенями зубчатой передачи. Тем не менее, зачастую, отдельные и сложные устройства требуются в коробке передач, чтобы исключать или уменьшать прерывание крутящего момента, так что получается восприятие бесступенчатых переключений передач.
Посредством соединения выходного вала двигателя внутреннего сгорания, ротора электрической машины и входного вала трансмиссионного устройства с планетарной передачей, может исключаться традиционный механизм муфты. При ускорении транспортного средства, увеличенный крутящий момент должен доставляться из двигателя внутреннего сгорания и электрической машины в трансмиссионное устройство и дополнительно на ведущие колеса транспортного средства. Поскольку как двигатель внутреннего сгорания, так и электрическая машина соединяются с планетарной передачей, наибольший возможный крутящий момент, доставляемый посредством двигателя внутреннего сгорания и электрической машины, будет ограничиваться посредством одного из этих модулей привода; т.е. того из них, максимальный крутящий момент которого ниже максимального крутящего момента второго модуля привода, с учетом передаточного отношения между ними. В случае если наибольший крутящий момент электрической машины ниже наибольшего крутящего момента двигателя внутреннего сгорания, с учетом передаточного отношения между ними, электрическая машина не имеет возможности формировать достаточно большой реактивный крутящий момент в планетарную передачу, что влечет за собой то, что двигатель внутреннего сгорания не может передавать свой наибольший крутящий момент в трансмиссионное устройство и дополнительно на ведущие колеса транспортного средства. Таким образом, наибольший крутящий момент, который может передаваться в трансмиссионное устройство, ограничен прочностью электрической машины. Это также очевидно из так называемого планетарного уравнения.
Использование традиционной муфты, которая отсоединяет входной вал коробки передач от двигателя внутреннего сгорания в ходе процессов переключения передач в коробке передач, влечет за собой такие недостатки, как нагрев дисков муфты, что приводит к износу дисков муфты и повышенному расходу топлива. Традиционный механизм муфты также является относительно тяжелым и дорогостоящим. Он также занимает относительно большое пространство в транспортном средстве.
В транспортном средстве, зачастую ограничивается пространство, доступное для узла привода. Если узел привода содержит несколько компонентов, таких как двигатель внутреннего сгорания, электрическая машина, коробка передач и планетарная передача, конструкция должна быть компактной. Если предусмотрены дополнительные компоненты, такие как рекуперативное тормозное устройство, требования для составных частей иметь компактную конструкцию являются еще более строгими. Одновременно, составные части в узле привода должны быть сконструированы с размерами, которые позволяют поглощать требуемые силы и крутящий момент.
Для некоторых типов транспортных средств, в частности, для большегрузных транспортных средств и автобусов, требуется большое число ступеней зубчатой передачи. Таким образом, увеличивается число составных частей в коробке передач, которая также должна иметь такие размеры, чтобы иметь возможность поглощать большие силы и крутящий момент, возникающие в таких большегрузных транспортных средствах. Это приводит к увеличению размера и веса коробки передач.
Также предусмотрены требования по высокой надежности и высокой безотказности компонентов, содержащихся в приводном устройстве. В случае если коробка передач содержит многодисковые муфты, возникает износ, который оказывает влияние на надежность и ресурс коробки передач.
При рекуперативном торможении, кинетическая энергия преобразуется в электрическую мощность, которая накапливается в устройстве накопления энергии, таком как аккумуляторы. Один фактор, оказывающий влияние на ресурс устройства накопления энергии, представляет собой число циклов, в которых устройство накопления энергии предоставляет и извлекает мощность в/из электрических машин. Чем больше циклов, тем меньше ресурс устройства накопления энергии.
В определенных рабочих режимах, требуется экономить топливо и не допускать охлаждения системы предварительной очистки выхлопов двигателя внутреннего сгорания в то время, когда транспортное средство приводится в движение с требуемым крутящим моментом.
Документ EP-B1-1126987 показывает коробку передач со сдвоенными планетарными передачами. Каждое солнечное зубчатое колесо планетарной передачи соединено с электрической машиной, и внутренние колеса планетарных передач соединяются между собой. Водило зубчатых колес планетарной передачи в каждой планетарной передаче соединено с определенным числом зубчатых пар, так что получается бесконечное число ступеней зубчатой передачи. Другой документ, EP-B1-1280677, также показывает то, как планетарные передачи могут шунтироваться со ступенью зубчатой передачи, расположенной на выходном валу двигателя внутреннего сгорания.
Документ US-A1-20050227803 показывает трансмиссию транспортного средства с двумя электрическими машинами, соединенными с соответствующими солнечными зубчатыми колесами в двух планетарных передачах. Планетарные передачи имеют общее водило зубчатых колес планетарной передачи, которое соединено с входным валом трансмиссии.
Документ WO2008/046185-A1 показывает гибридную трансмиссию с двумя планетарными передачами, при этом одна электрическая машина соединена с одной из планетарных передач, и сдвоенная муфта взаимодействует со второй планетарной передачей. Обе планетарные передачи также взаимодействуют между собой через зубчатую трансмиссию.
Раскрытие изобретения
Несмотря на решения уровня техники в данной области техники, имеется потребность в том, чтобы дополнительно разрабатывать способ управления гибридной силовой передачей для обеспечения переключения передач без прерывания крутящего момента и оптимизировать расход топлива в двигателе внутреннего сгорания, расположенном в силовой передаче.
Цель этого изобретения состоит в том, чтобы предоставлять новый и преимущественный способ управления гибридной силовой передачей, который оптимизирует расход топлива в двигателе внутреннего сгорания, расположенном в силовой передаче.
Другая цель этого изобретения состоит в том, чтобы предоставлять новый и преимущественный способ управления гибридной силовой передачей, который оптимизирует предварительную очистку выхлопов в двигателе внутреннего сгорания, расположенном в силовой передаче.
Другая цель изобретения состоит в том, чтобы предоставлять новую и преимущественную компьютерную программу для управления гибридной силовой передачей.
Эти цели достигаются за счет способа, указываемого в начале, который отличается посредством признаков, указываемых в отличительной части по п.1.
Эти цели также достигаются за счет транспортного средства, указываемого в начале, которое отличается посредством признаков, указываемых в отличительной части по п.11.
Эти цели также достигаются за счет компьютерной программы для управления коробкой передач, которая отличается посредством признаков, указываемых в отличительной части по п.12.
Эти цели также достигаются за счет компьютерного программного продукта для управления коробкой передач, который отличается посредством признаков, указываемых в отличительной части по п.13.
За счет способа согласно изобретению, получается эффективный и надежный способ управления гибридной силовой передачей для оптимизации расхода топлива, при этом гибридная силовая передача содержит двигатель внутреннего сгорания; коробку передач с входным валом и выходным валом; первую планетарную передачу, соединенную с входным валом и первым главным валом; вторую планетарную передачу, соединенную с первой планетарной передачей и вторым главным валом; первую электрическую машину, соединенную с первой планетарной передачей; вторую электрическую машину, соединенную со второй планетарной передачей; по меньшей мере, одну зубчатую пару, соединенную с первым главным валом и, таким образом, с первой планетарной передачей и выходным валом; и по меньшей мере одну зубчатую пару, соединенную со вторым главным валом и, таким образом, со второй планетарной передачей и выходным валом, при этом двигатель внутреннего сгорания соединен с первым водилом зубчатого колеса планетарной передачи, расположенным в первой планетарной передаче, через входной вал коробки передач, и при этом второй главный вал соединен с водилом зубчатых колес планетарной передачи, расположенным во второй планетарной передаче.
Посредством обеспечения того, что подвижные части первой планетарной передачи отсоединяются друг от друга, и того, что подвижные части второй планетарной передачи отсоединяются друг от друга, посредством доведения двигателя внутреннего сгорания до заданной скорости вращения двигателя и посредством управления первой и второй электрическими машинами таким образом, что требуемый крутящий момент достигается на выходном валу, расход топлива в гибридной силовой передаче может быть оптимизирован в то время, когда зацепляется одна и та же шестерня. При некоторых низких и средних высоких крутящих моментах на выходном валу, в силу этого, преимущественно, при зацепленной идентичной шестерне, расстопорить планетарную передачу, которая стопорится для шестерни, чтобы доводить двигатель внутреннего сгорания до заданной скорости вращения двигателя и управлять первой и второй электрическими машинами таким образом, что требуемый крутящий момент получается на выходном валу.
Согласно одному варианту осуществления, заданная скорость вращения двигателя соответствует фактически скорости вращения двигателя на холостом ходу для двигателя внутреннего сгорания. Заданная скорость вращения двигателя может представлять собой требуемую скорость вращения двигателя в определенном рабочем режиме. Заданная скорость вращения двигателя может находиться в интервале +/-100 об/мин около скорости вращения двигателя на холостом ходу. Заданная скорость вращения двигателя может находиться в интервале +/-200 об/мин около скорости вращения двигателя на холостом ходу. Заданная скорость вращения двигателя может находиться в применимом интервале около скорости вращения двигателя на холостом ходу либо в интервале, который ниже скорости вращения двигателя на холостом ходу или выше скорости вращения двигателя на холостом ходу. Скорость вращения двигателя на холостом ходу может составлять 500 об/мин. Скорость вращения двигателя на холостом ходу может составлять 1000 об/мин. Заданная скорость вращения двигателя может находиться в интервале 300-700 об/мин, предпочтительно в интервале 400-600 об/мин. Таким образом, заданная скорость вращения двигателя представляет собой скорость вращения двигателя, которая приводит к уменьшению расхода топлива. Низкая скорость вращения двигателя в двигателе внутреннего сгорания приводит к уменьшенным потерям на трение в силовой передаче. Низкая скорость вращения двигателя также приводит к уменьшению воздушного потока в двигателе внутреннего сгорания и, таким образом, в системе предварительной очистки выхлопов двигателя внутреннего сгорания. Это не допускает охлаждения системы предварительной очистки выхлопов до температур, которые оказывают негативное влияние на рабочие характеристики системы предварительной очистки выхлопов.
Предпочтительно, подвижные части, расположенные в первой планетарной передаче, отсоединяются посредством управления первой и/или второй электрической машиной таким образом, что равновесие крутящих моментов достигается в первой планетарной передаче, при этом первое соединительное устройство переключается таким образом, что первое водило зубчатого колеса планетарной передачи, расположенное в первой планетарной передаче, и первое солнечное зубчатое колесо отсоединяются друг от друга.
Предпочтительно, подвижные части, расположенные во второй планетарной передаче, отсоединяются посредством управления первой и/или второй электрической машиной таким образом, что равновесие крутящих моментов достигается во второй планетарной передаче, при этом второе соединительное устройство переключается таким образом, что второе водило зубчатых колес планетарной передачи, расположенное во второй планетарной передаче, и второе солнечное зубчатое колесо отсоединяются друг от друга.
Равновесие крутящих моментов связано с состоянием, в котором крутящий момент действует на внутреннюю коронную шестерню, расположенную в планетарной передаче, представляющий собой произведение крутящего момента, действующего на водило зубчатых колес планетарной передачи планетарной передачи, и передаточного отношения планетарной передачи, при этом одновременно крутящий момент действует на солнечное зубчатое колесо планетарной передачи, представляющий собой произведение крутящего момента, действующего на водило зубчатых колес планетарной передачи, и (1-передаточное отношение планетарной передачи). В случае если две из составных частей планетарной передачи, т.е. солнечное зубчатое колесо, внутренняя коронная шестерня или водила зубчатых колес планетарной передачи, соединяются с соединительным устройством, это соединительное устройство не передает крутящий момент между частями планетарной передачи, когда равновесие крутящих моментов преобладает. Соответственно, соединительное устройство может легко переключаться, и составные части планетарной передачи могут отсоединяться.
Согласно одному варианту осуществления, крутящий момент, требуемый на выходном валу, представляет собой положительный крутящий момент. Если гибридная силовая передача расположена в транспортном средстве, это означает то, что транспортное средство приведено в движение посредством первой и второй электрической машины и двигателя внутреннего сгорания. Крутящий момент, требуемый на выходном валу, представляет собой любой требуемый крутящий момент и, таким образом, может представлять собой крутящий момент, запрашиваемый водителем транспортного средства, или крутящий момент, запрашиваемый посредством системы управления транспортного средства. Крутящий момент, запрашиваемый водителем, может определяться, например, на основе позиции педали акселератора согласно преобладающим способам. Требуемый крутящий момент надлежащим образом определяется в устройстве управления, соединенном с гибридной силовой передачей. Первая и вторая электрические машины предпочтительно управляются на основе требуемого полного потребления мощности первой и второй электрических машин и посредством крутящего момента, требуемого на выходном валу. Таким образом, данный крутящий момент, требуемый на выходном валу, может достигаться при различных полных потреблениях мощности. Предпочтительно, первая и вторая электрические машины управляются таким образом, что требуемое полное потребление мощности достигается с учетом требуемой входной мощности в/из устройства накопления энергии и потребления мощности других электрических нагрузок. Если определенное потребление мощности является требуемым, первая и вторая электрические машины в силу этого могут управляться таким образом, что требуемое потребление мощности достигается, при этом одновременно требуемый крутящий момент на выходном валу достигается с учетом рабочих характеристик компонентов.
Согласно одному варианту осуществления, крутящий момент, требуемый на выходном валу, представляет собой отрицательный крутящий момент. Если гибридная силовая передача расположен в транспортном средстве, это означает то, что транспортное средство замедляется. Крутящий момент, требуемый на выходном валу, в силу этого может представлять собой крутящий момент, запрашиваемый водителем транспортного средства, или крутящий момент, запрашиваемый посредством системы управления транспортного средства. Крутящий момент, требуемый на выходном валу, запрашиваемый водителем, может в этом случае определяться на основе позиции педали тормоза согласно преобладающим способам. В некоторых случаях, так называемое рекуперативное замедление также может достигаться при отрицательном крутящем моменте на выходном валу. Когда первая и вторая электрические машины управляются таким образом, чтобы достигать требуемого отрицательного крутящего момента на выходном валу, на двигатель внутреннего сгорания оказывает влияние крутящий момент в зависимости от крутящего момента, сформированного посредством первой и второй электрической машины, соответственно. Первая и вторая электрические машины предпочтительно управляются на основе крутящего момента, действующего на двигатель внутреннего сгорания, и на основе крутящего момента, требуемого на выходном валу. Таким образом, первая и вторая электрические машины могут управляться таким образом, что требуемый отрицательный крутящий момент на выходном валу достигается, при этом одновременно двигатель внутреннего сгорания поддерживает свою скорость вращения двигателя на холостом ходу без подачи топлива в двигатель внутреннего сгорания. Крутящий момент, действующий на двигатель внутреннего сгорания, может определяться посредством регулятора скорости вращения.
Электрические машины, которые соединены с планетарными передачами, могут вырабатывать мощность и/или подавать крутящий момент в зависимости от требуемого рабочего режима. Электрические машины, в определенные периоды работы, также могут подавать друг в друга мощность.
Предпочтительно, первый главный вал и второй главный вал соединяются с трансмиссионным устройством, содержащим определенное число соединяемых и отсоединяемых зубчатых пар. Зубчатые пары содержат зубчатые колеса, которые являются механически стопоримыми с и отсоединяемыми от промежуточного вала. Таким образом, получается определенное число фиксированных ступеней зубчатой передачи, которые могут переключаться без прерывания крутящего момента. Зубчатые колеса, которые могут фиксироваться на промежуточном валу, также приводят к компактной конструкции с высокой надежностью и высокой безотказностью. Таким образом, зубчатая пара может отсоединяться, после чего соответствующее зубчатое колесо отсоединяется от промежуточного вала, и зубчатая пара может соединяться, после чего соответствующее зубчатое колесо соединяется с промежуточным валом. Альтернативно, сателлитные шестерни в зубчатых парах могут быть выполнены с возможностью быть стопоримыми с и отсоединяемыми от первого главного вала или второго главного вала.
Каждая из зубчатых пар имеет передаточное отношение, которое адаптировано к требуемым характеристикам приведения в движение транспортного средства. Зубчатая пара с наибольшим передаточным отношением, относительно других зубчатых пар, надлежащим образом соединена, когда зацепляется низшая передача.
Надлежащим образом, первое водило зубчатых колес планетарной передачи в первой планетарной передаче непосредственно соединено с двигателем внутреннего сгорания через входной вал. Альтернативно, первое водило зубчатых колес планетарной передачи соединено с двигателем внутреннего сгорания через соединительное устройство. Второе водило зубчатых колес планетарной передачи во второй планетарной передаче предпочтительно непосредственно соединено со вторым главным валом и, следовательно, с трансмиссионным устройством. Таким образом, достигается гибридная силовая передача, которая позволяет передавать большой крутящий момент на выходной вал и соединенные с ним ведущие колеса во всех рабочих режимах, без зависимости от электрической мощности из устройства накопления энергии.
Первое водило зубчатых колес планетарной передачи в первой планетарной передаче предпочтительно соединено со вторым солнечным зубчатым колесом второй планетарной передачи. Первое солнечное зубчатое колесо в первой планетарной передаче предпочтительно соединено с первым главным валом, и второе водило зубчатых колес планетарной передачи во второй планетарной передаче предпочтительно соединено со вторым главным валом. Таким образом, получается трансмиссия, которая переключает передачи без прерывания крутящего момента. Альтернативно, первое водило зубчатых колес планетарной передачи в первой планетарной передаче соединено со второй внутренней коронной шестерней второй планетарной передачи. Альтернативно, первый главный вал соединен с первой внутренней коронной шестерней, расположенной в первой планетарной передаче.
За счет коробки передач согласно изобретению, могут исключаться традиционные муфты проскальзывания между двигателем внутреннего сгорания и коробкой передач.
Стопорящий механизм выполнен с возможностью фиксированным образом соединять выходной вал двигателя внутреннего сгорания с картером коробки передач. Таким образом, первое водило зубчатых колес планетарной передачи также должно фиксироваться в картере коробки передач. Посредством стопорения выходного вала двигателя внутреннего сгорания посредством стопорящего механизма и первого водила зубчатых колес планетарной передачи посредством картера коробки передач, коробка передач и, таким образом, транспортное средство становится адаптированным для электроснабжения посредством электрических машин. Таким образом, электрические машины выдают крутящий момент на выходной вал коробки передач. Альтернативно, соединительное устройство может размещаться между выходным валом двигателя внутреннего сгорания и входным валом коробки передач, при этом двигатель внутреннего сгорания может отсоединяться посредством открытия соединительного устройства и, таким образом, коробки передач, и, следовательно, транспортное средство может становиться адаптированным для энергоснабжения посредством электрических машин.
Первое и второе соединительное устройство размещаются между водилом зубчатых колес планетарной передачи и солнечным зубчатым колесом соответствующих планетарных передач. Задача соединительных устройств состоит в том, чтобы стопорить соответствующие водила зубчатых колес планетарной передачи посредством солнечного зубчатого колеса. Когда водило зубчатых колес планетарной передачи и солнечное зубчатое колесо соединяются между собой, мощность из двигателя внутреннего сгорания должна проходить через водило зубчатых колес планетарной передачи, соединительное устройство, солнечное зубчатое колесо и далее в коробку передач, что влечет за собой то, что зубчатые колеса планетарной передачи не поглощают крутящий момент. Это влечет за собой то, что размер зубчатых колес планетарной передачи может быть адаптирован только к крутящему моменту электрической машины вместо крутящего момента двигателя внутреннего сгорания, что, в свою очередь, означает то, что зубчатые колеса планетарной передачи могут быть сконструированы с меньшими размерами. Таким образом, получается узел привода согласно изобретению, который имеет компактную конструкцию, низкий вес и низкие затраты на изготовление.
Соединительные устройства и стопорящие механизмы предпочтительно содержат кольцевую втулку, которая переключается аксиально между соединенным и отсоединенным состоянием. Втулка размещает, по существу концентрически, вращающиеся компоненты коробки передач и перемещается между соединенным и отсоединенным состоянием посредством силового элемента. Таким образом, получается компактная конструкция с низким весом и низкими затратами на изготовление.
Краткое описание чертежей
Ниже приводится описание, в качестве примера, предпочтительных вариантов осуществления изобретения со ссылкой на прилагаемые чертежи, на которых:
Фиг.1 схематично показывает транспортное средство при виде сбоку с гибридной силовой передачей, управляемой согласно настоящему изобретению,
Фиг.2 схематично показывает вид сбоку гибридной силовой передачи, управляемой согласно настоящему изобретению,
Фиг.3 показывает упрощенный схематичный вид гибридной силовой передачи на фиг.2, и
Фиг.4 показывает блок-схему последовательности операций способа управления гибридной силовой передачей согласно настоящему изобретению.
Описание предпочтительных вариантов осуществления изобретения
Фиг.1 показывает схематичный вид сбоку транспортного средства 1, содержащего коробку 2 передач и двигатель 4 внутреннего сгорания, которые содержатся в гибридной силовой передаче 3. Двигатель 4 внутреннего сгорания соединен с коробкой 2 передач, и коробка 2 передач дополнительно соединена с ведущими колесами 6 транспортного средства 1 через карданный вал 9. Ведущие колеса 6 оснащены тормозными устройствами 7, чтобы осуществлять торможение транспортного средства 1.
Фиг.2 показывает схематичный вид сбоку гибридной силовой передачи 3 с коробкой 2 передач, содержащей входной вал 8, первую и вторую планетарную передачу 10 и 12, соответственно, первую и вторую электрическую машину 14 и 16, соответственно, промежуточный вал 18 и выходной вал 20. Гибридная силовая передача содержит двигатель 4 внутреннего сгорания, соединенный с коробкой 2 передач. Двигатель 4 внутреннего сгорания соединен с коробкой 2 передач через входной вал 8 коробки передач. Двигатель внутреннего сгорания имеет выходной вал 97. Выходной вал 97 двигателя 4 внутреннего сгорания соединен с входным валом 8 коробки 2 передач. Первая планетарная передача 10 имеет первую внутреннюю коронную шестерню 22, с которой соединен первый ротор 24 в первой электрической машине 14. Первая планетарная передача 10 также имеет первое солнечное зубчатое колесо 26 и первое водило 50 зубчатых колес планетарной передачи. Первое водило 50 зубчатых колес планетарной передачи соединено с двигателем 4 внутреннего сгорания через входной вал 8 коробки передач. Вторая планетарная передача 12 имеет вторую внутреннюю коронную шестерню 28, с которой соединен второй ротор 30 второй электрической машины 16. Вторая планетарная передача 12 имеет второе солнечное зубчатое колесо 32 и второе водило 51 зубчатых колес планетарной передачи. Первое и второе солнечные зубчатые колеса 26 и 32, соответственно, размещаются коаксиально, что, согласно показанному варианту осуществления, влечет за собой то, что первый главный вал 34, расположенный на первом солнечном зубчатом колесе 26, идет во втором главном валу 36, который оснащен центральным отверстием 38, расположенным на втором водиле 51 зубчатых колес планетарной передачи. Также можно размещать первый главный вал 34 параллельно и рядом со вторым главным валом 36. В этом случае, промежуточный вал 18 надлежащим образом расположен между первым главным валом 34 и вторым главным валом 36, и крутящий момент может извлекаться непосредственно из промежуточного вала 18. Промежуточный вал 18 в силу этого составляет, в этом случае, выходной вал 20.
Первая электрическая машина 14 оснащена первым статором 40, который соединен с транспортным средством 1 через картер 42 коробки передач, окружающий коробку 2 передач. Вторая электрическая машина 16 оснащена вторым статором 44, который соединен с транспортным средством 1 через картер 42 коробки передач, окружающий коробку 2 передач. Первая и вторая электрическая машина 16 соединяются с устройством 46 накопления энергии, таким как аккумулятор, который, в зависимости от рабочего режима транспортного средства 1, управляет электрическими машинами 14 и 16, соответственно. В других рабочих режимах, электрические машины 14 и 16, соответственно, могут работать в качестве генераторов, при этом мощность подается в устройство 46 накопления энергии. Электронное устройство 48 управления соединено с устройством 46 накопления энергии и управляет подачей мощности в электрические машины 14 и 16, соответственно. Предпочтительно, устройство 46 накопления энергии соединено с электрическими машинами 14 и 16, соответственно, через переключатель 49, который соединен с устройством 48 управления. В некоторых рабочих режимах, электрические машины 14 и 16, соответственно, также могут управлять друг другом. Электрическая мощность затем направляется из одной из электрических машин 14, 16 во вторую электрическую машину 14, 16 через переключатель 49, соединенный с электрическими машинами 14, 16. Таким образом, можно добиваться баланса мощностей между электрическими машинами 14, 16. Другой компьютер 53 также может соединяться с устройством 48 управления и коробкой 2 передач.
Первая планетарная передача 10 оснащена первым водилом 50 зубчатых колес планетарной передачи, на котором монтируется первый набор зубчатых колес 52 планетарной передачи. Вторая планетарная передача 12 оснащена вторым водилом 51 зубчатых колес планетарной передачи, на котором монтируется второй набор зубчатых колес 54 планетарной передачи. Первый набор зубчатых колес 52 планетарной передачи взаимодействует с первой внутренней коронной шестерней 22 и первым солнечным зубчатым колесом 26. Второй набор зубчатых колес 54 планетарной передачи взаимодействует со второй внутренней коронной шестерней 28 и вторым солнечным зубчатым колесом 32. Входной вал 8 коробки 2 передач соединен с первым водилом 50 зубчатых колес планетарной передачи.
Первое соединительное устройство 56 расположено между первым солнечным зубчатым колесом 26 и первым водилом 50 зубчатых колес планетарной передачи. Посредством расположения первого соединительного устройства 56 таким образом, что первое солнечное зубчатое колесо 26 и первое водило 50 зубчатых колес планетарной передачи соединяются между собой и, следовательно, не могут вращаться относительно друг друга, первое водило 50 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 26 должны вращаться с равными частотами вращения.
Второе соединительное устройство 58 расположено между вторым солнечным зубчатым колесом 32 и вторым водилом 51 зубчатых колес планетарной передачи. Посредством расположения второго соединительного устройства 58 таким образом, что второе солнечное зубчатое колесо 32 и второе водило 51 зубчатых колес планетарной передачи соединяются между собой и, следовательно, не могут вращаться относительно друг друга, второе водило 51 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 32 должны вращаться с равными частотами вращения.
Предпочтительно, первое и второе соединительные устройства 56, 58 содержат первую и вторую соединительную шлицевую втулку 55 и 57, соответственно, которые являются аксиально переключаемыми на шлицевые секции, соответственно, на первом и втором водиле 50 и 51 зубчатых колес планетарной передачи и на шлицевые секции на соответствующих солнечных зубчатых колесах 26 и 32. Посредством переключения соответствующей соединительной втулки 55, 57 таким образом, что шлицевые секции соединяются через соответствующие соединительные втулки 55, 57, первое водило 50 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 26, а также второе водило 51 зубчатых колес планетарной передачи и второе солнечное зубчатое колесо 32, соответственно, становятся взаимно сцепленными между собой и не могут вращаться относительно друг друга.
Первое и второе соединительное устройство 56, 58 согласно варианту осуществления, показанному на фиг.2, размещаются между первым солнечным зубчатым колесом 26 и первым водилом 50 зубчатых колес планетарной передачи и между вторым солнечным зубчатым колесом 28 и вторым водилом 51 зубчатых колес планетарной передачи, соответственно. Тем не менее, можно размещать дополнительное или альтернативное соединительное устройство (не показано) между первой внутренней коронной шестерней 22 и первым водилом 50 зубчатых колес планетарной передачи, а также размещать дополнительное или альтернативное соединительное устройство (не показано) между второй внутренней коронной шестерней 28 и вторым водилом 51 зубчатых колес планетарной передачи.
Первое водило 50 зубчатых колес планетарной передачи в первой планетарной передаче 10, в этом варианте осуществления, фиксированным образом соединено со вторым солнечным зубчатым колесом 32 второй планетарной передачи 12.
Трансмиссионное устройство 19, которое содержит первую зубчатую пару 60, расположенную между первой планетарной передачей 10 и выходным валом 20, соединено с первым и вторым главным валом 34, 36. Первая зубчатая пара 60 содержит первую сателлитную шестерню 62 и первое зубчатое колесо 64, которые находятся в зацеплении друг с другом. Вторая зубчатая пара 66 расположена между второй планетарной передачей 12 и выходным валом 20. Вторая зубчатая пара 66 содержит вторую сателлитную шестерню 68 и второе зубчатое колесо 70, которые находятся в зацеплении друг с другом. Третья зубчатая пара 72 расположена между первой планетарной передачей 10 и выходным валом 20. Третья зубчатая пара 72 содержит третью сателлитную шестерню 74 и третье зубчатое колесо 76, которые находятся в зацеплении друг с другом. Четвертая зубчатая пара 78 расположена между второй планетарной передачей 12 и выходным валом 20. Четвертая зубчатая пара 78 содержит четвертую сателлитную шестерню 80 и четвертое зубчатое колесо 82, которые находятся в зацеплении друг с другом.
На первом главном валу 34, размещаются первая и третья сателлитные шестерни 62 и 74, соответственно. Первая и третья сателлитные шестерни 62 и 74, соответственно, фиксированным образом соединяются с первым главным валом 34, так что они не могут вращаться относительно первого главного вала 34. На втором главном валу 36, размещаются вторая и четвертая сателлитные шестерни 68 и 80, соответственно. Вторая и четвертая сателлитные шестерни 68 и 80, соответственно, фиксированным образом соединяются со вторым главным валом 36, так что они не могут вращаться относительно второго главного вала 36.
Промежуточный вал 18 идет по существу параллельно с первым и вторым главным валом 34 и 36, соответственно. На промежуточном валу 18, монтируются первое, второе, третье и четвертое зубчатые колеса 64, 70, 76 и 82, соответственно. Первая сателлитная шестерня 62 зацепляется с первым зубчатым колесом 64, вторая сателлитная шестерня 68 зацепляется со вторым зубчатым колесом 70, третья сателлитная шестерня 74 зацепляется с третьим зубчатым колесом 76, и четвертая сателлитная шестерня 80 зацепляется с четвертым зубчатым колесом 82.
Первое, второе, третье и четвертое зубчатые колеса 64, 70, 76 и 82, соответственно, могут по отдельности фиксироваться на и высвобождаться от промежуточного вала 18 посредством первого, второго, третьего и четвертого соединительных элементов 84, 86, 88 и 90, соответственно. Соединительные элементы 84, 86, 88 и 90, соответственно, предпочтительно состоят из шлицевых секций на зубчатых колесах 64, 70, 76 и 82, соответственно, и на промежуточном валу 18, которые взаимодействуют с пятой и шестой соединительными втулками 83, 85, которые механически зацепляются со шлицевыми секциями соответствующего первого-четвертого зубчатого колеса 64, 70, 76 и 82 и промежуточного вала 18. Первый и третий соединительные элементы 84, 88 предпочтительно оснащены общей соединительной втулкой 83, и второй и четвертой соединительные элементы 86, 90 предпочтительно оснащены общей соединительной втулкой 85. В расцепленном состоянии, относительное вращение может возникать между зубчатыми колесами 64, 70, 76 и 82 и промежуточным валом 18. Соединительные элементы 84, 86, 88 и 90, соответственно, также могут состоять из фрикционных муфт. На промежуточном валу 18 также расположено пятое зубчатое колесо 92, которое зацепляется с шестым зубчатым колесом 92, 94, которое расположено на выходном валу 20 коробки 2 передач.
Промежуточный вал 18 расположен между соответствующими первой и второй планетарными передачами 10, 12 и выходным валом 20, так что промежуточный вал 18 соединен с выходным валом 20 через пятую зубчатую пару 21, которая содержит пятое и шестое зубчатое колесо 92, 94. Пятое зубчатое колесо 92 расположено с возможностью соединения или отсоединения от промежуточного вала 18 посредством пятого соединительного элемента 93.
Посредством отсоединения пятого зубчатого колеса 92, которое выполнено с возможностью быть отсоединяемым от промежуточного вала 18, можно передавать крутящий момент из второй планетарной передачи 12 на промежуточный вал 18, например, через вторую зубчатую пару 66 и дополнительно передавать крутящий момент из промежуточного вала 18 на выходной вал 20, например, через первую зубчатую пару 60. Таким образом, получается число ступеней зубчатой передачи, при котором крутящий момент из одной из планетарных передач 10, 12 может передаваться на промежуточный вал 18 и далее из промежуточного вала 18 на главный вал 34, 36, соединенный со второй планетарной передачей 10, 12, в завершение, чтобы передавать крутящий момент на выходной вал 20 коробки 2 передач. Тем не менее, это предполагает то, что соединен соединительный механизм 96, расположенный между первым главным валом 34 и выходным валом 20, который подробнее описан ниже.
Пятое зубчатое колесо 92 может фиксироваться на и высвобождаться от промежуточного вала 18 посредством пятого соединительного элемента 93. Соединительный элемент 93 предпочтительно состоит из шлицевых секций, адаптированных на пятом зубчатом колесе 92 и промежуточном валу 18, причем эти секции взаимодействуют с девятой соединительной втулкой 87, которая механически зацепляется со шлицевыми секциями пятого зубчатого колеса 92 и промежуточного вала 18. В расцепленном состоянии, относительное вращение может возникать между пятым зубчатым колесом 92 и промежуточным валом 18. Пятый соединительный элемент 93 также может состоять из фрикционных муфт.
Передача крутящего момента из входного вала 8 коробки 2 передач на выходной вал 20 коробки 2 передач может возникать через первую или вторую планетарную передачу 10 и 12, соответственно, и промежуточный вал 18. Передача крутящего момента также может возникать непосредственно через первую планетарную передачу 10, первое солнечное зубчатое колесо 26 которой соединено, через первый главный вал 34, с выходным валом 20 коробки 2 передач через соединительный механизм 96. Соединительный механизм 96 предпочтительно содержит седьмую соединительную шлицевую втулку 100, которая является аксиально переключаемой на первом главном валу 34 и на шлицевых секциях выходного вала 20. Посредством переключения седьмой соединительной втулки 100 таким образом, что шлицевые секции соединяются через седьмую соединительную втулку 100, первый главный вал 34 становится застопоренным посредством выходного вала 20, которые при вращении, таким образом, должны иметь идентичную скорость вращения. Посредством отсоединения пятого зубчатого колеса 92 пятой зубчатой пары 21 от промежуточного вала 18, крутящий момент из второй планетарной передачи 12 может передаваться на промежуточный вал 18 и далее из промежуточного вала 18 на первый главный вал 34, соединенный с первой планетарной передачей 10, чтобы, в завершение, передавать крутящий момент через соединительный механизм 96 на выходной вал 20 коробки 2 передач.
В ходе работы, коробка 2 передач в некоторых рабочих режимах может работать таким образом, что одно из солнечных зубчатых колес 26 и 32, соответственно, стопорится посредством первого и второго водила 50 и 51 зубчатых колес планетарной передачи, соответственно, с использованием первого и второго соединительного устройства 56 и 58, соответственно. Первый и второй главный вал 34 и 36, соответственно, затем получает скорость вращения, идентичную скорости вращения входного вала 8 коробки 2 передач, в зависимости от которой солнечное зубчатое колесо 26 и 32, соответственно, стопорится посредством соответствующих водил 50 и 51 зубчатых колес планетарной передачи. Одна или обе из электрических машин 14 и 16, соответственно, могут работать в качестве генератора для того, чтобы вырабатывать электрическую мощность в устройство 46 накопления энергии. Альтернативно, электрическая машина 14 и 16, соответственно, может предоставлять ввод крутящего момента, чтобы за счет этого увеличивать крутящий момент на выходном валу 20. В некоторые периоды работы, электрические машины 14 и 16, соответственно, подают друг в друга электрическую мощность, независимо от устройства 46 накопления энергии.
Также возможно то, что как первая, так и вторая электрическая машина 14 и 16, соответственно, вырабатывают мощность в устройство 46 накопления энергии. При торможении двигателем, водитель отпускает педаль акселератора (не показана) транспортного средства 1. Выходной вал 20 коробки 2 передач затем управляет одной или обеими электрическими машинами 14 и 16, соответственно, в то время как двигатель 4 внутреннего сгорания и электрические машины 14 и 16, соответственно, тормозят двигателем. Электрические машины 14 и 16, соответственно, в этом случае вырабатывают электрическую мощность, которая накапливается в устройстве 46 накопления энергии в транспортном средстве 1. Это рабочее состояние упоминается в качестве рекуперативного торможения. Чтобы еще более усиливать эффект замедления, выходной вал 97 двигателя 4 внутреннего сгорания можно стопориться, и за счет этого может не допускаться его вращение. Таким образом, только одна или обе электрические машины 14 и 16, соответственно, должны выступать в качестве тормозов и 16, чтобы вырабатывать электрическую мощность, которая накапливается в устройстве 46 накопления энергии. Стопорение выходного вала 97 двигателя 4 внутреннего сгорания также может выполняться, когда транспортное средство должно ускоряться только посредством одной или обеих электрических машин 14 и 16, соответственно. Если крутящий момент одной или обеих соответствующих электрических машин 14 и 16 преодолевает крутящий момент из двигателя 4 внутреннего сгорания, и с учетом передаточного отношения между ними, в таком случае двигатель 4 внутреннего сгорания может возможность сопротивляться большому крутящему моменту, который формируют соответствующие электрические машины 14 и 16, так что появляется необходимость стопорить выходной вал 97 двигателя 4 внутреннего сгорания. Стопорение выходного вала 97 двигателя 4 внутреннего сгорания предпочтительно выполняется посредством стопорящего устройства 102, которое расположено между первым водилом 50 зубчатых колес планетарной передачи и картером 42 коробки передачи. Посредством стопорения первого водила 50 зубчатых колес планетарной передачи и картера 42 коробки передач, выходной вал 97 двигателя 4 внутреннего сгорания также должен стопориться, поскольку выходной вал 97 двигателей 4 внутреннего сгорания соединен с первым водилом 50 зубчатых колес планетарной передачи через входной вал 8 коробки передач. Стопорящее устройство 102 предпочтительно содержит восьмую соединительную шлицевую втулку 104, которая является аксиально переключаемой на шлицевые секции первого водила 50 зубчатых колес планетарной передачи и на шлицевые секции картера коробки передач. Посредством переключения восьмой соединительной втулки 104 таким образом, что шлицевые секции соединяются через соединительную втулку 104, не допускается вращение первого водила 50 зубчатых колес планетарной передачи и, следовательно, выходного вала 97 двигателя 4 внутреннего сгорания.
Устройство 48 управления соединено с электрическими машинами 14 и 16, соответственно, чтобы управлять соответствующими электрическими машинами 14 и 16 таким образом, что они, в течение определенных периодов работы, используют накопленную электрическую мощность для того, чтобы подавать мощность приведения в движение на выходной вал 20 коробки 2 передач, и в течение других периодов работы используют кинетическую энергию выходного вала 20 коробки 2 передач для того, чтобы извлекать и накапливать электрическую мощность. Таким образом, устройство 48 управления определяет скорость вращения и/или крутящий момент выходного вала 97 двигателя 4 внутреннего сгорания через датчики 98, расположенные в электрических машинах 14 и 16, соответственно, и на выходном валу 20 коробки 2 передач, чтобы за счет этого собирать информацию и управлять электрическими машинами 14 и 16, соответственно, таким образом, что они работают в качестве электромоторов или генераторов. Устройство 48 управления может представлять собой компьютер с программным обеспечением, подходящий для этой цели. Устройство 48 управления также управляет потоком мощности между устройством 46 накопления энергии и соответствующими статорами 40 и 44 электрических машин 14 и 16, соответственно. В периоды, когда электрические машины 14 и 16, соответственно, работают в качестве двигателей, накопленная электрическая мощность подается из устройства 46 накопления энергии в соответствующие статоры 40 и 44. В периоды, когда электрические машины 14 и 16 работают в качестве генераторов, электрическая мощность подается из соответствующих статоров 40 и 44 в устройство 46 накопления энергии. Тем не менее, как указано выше, электрические машины 14 и 16, соответственно, могут, в течение определенных периодов работы, подавать друг в друга электрическую мощность, независимо от устройства 46 накопления энергии.
Первое и второе соединительные устройства 56 и 58, соответственно, первый, второй, третий, четвертый и пятый соединительные элементы 84, 86, 88, 90 и 93, соответственно, соединительный механизм 96 между первым главным валом 34 и выходным валом 20 и стопорящее устройство 102 между первым водилом 50 зубчатых колес планетарной передачи и картером 42 коробки передач соединяются с устройством 48 управления через соответствующие соединительные втулки. Эти компоненты предпочтительно приводятся в действие и выводятся из действия посредством электрических сигналов из устройства 48 управления. Соединительные втулки предпочтительно переключаются посредством непоказанных силовых элементов, таких как цилиндры с гидравлическим или пневматическим управлением. Также можно переключать соединительные втулки посредством силовых элементов с электроприводом.
Примерный вариант осуществления на фиг.2 показывает четыре сателлитные шестерни 62, 68, 74 и 80, соответственно, и четыре зубчатых колеса 64, 70, 76 и 82, соответственно, и две соответствующих планетарных передачи 10 и 12, с ассоциированными электрическими машинами 14 и 16, соответственно. Тем не менее, можно адаптировать коробку 2 передач с большим или меньшим числом сателлитных шестерен и зубчатых колес и с большим числом планетарных передач с ассоциированными электрическими машинами.
Ниже описывается переключение коробки передач "вверх" с первой на седьмую передачу, при этом коробка 2 передач расположена в транспортном средстве 1, и транспортное средство приведено в движение посредством двигателя 4 внутреннего сгорания.
Входной вал 8 коробки 2 передач соединен с выходным валом 97 двигателя 4 внутреннего сгорания транспортного средства 1. Выходной вал 20 коробки 2 передач соединен с ведущим валом 99 в транспортном средстве 1. На холостом ходу двигателя 4 внутреннего сгорания, и когда транспортное средство 1 стоит на месте, входной вал 8 коробки 2 передач вращается одновременно с тем, как выходной вал 20 коробки 2 передач остановлен. Стопорящее устройство 102 выводится из действия, так что выходной вал 97 двигателя 4 внутреннего сгорания может свободно вращаться. Поскольку входной вал 8 коробки 2 передач вращается, первое водило 50 зубчатых колес планетарной передачи также должно вращаться, что влечет за собой то, что первый набор зубчатых колес 52 планетарной передачи должен вращаться. Поскольку первое водило 50 зубчатых колес планетарной передачи соединено со вторым солнечным зубчатым колесом 32, второе солнечное зубчатое колесо 32 и, таким образом, также второй набор зубчатых колес 54 планетарной передачи должны вращаться. За счет отсутствия подачи мощности в первую и вторую электрические машины 14 и 16, соответственно, первое и второе внутренние кольца 22 и 28, соответственно, которые соединены с соответствующим первым и вторым ротором 24 и 30 электрических машин 14 и 16, соответственно, должны свободно вращаться, так что крутящий момент не поглощается посредством соответствующих внутренних колец 22 и 28. Первое и второе соединительные устройства 56 и 58, соответственно, отсоединяются и, таким образом, не приводятся в действие. Таким образом, крутящий момент не передается из двигателя 4 внутреннего сгорания на солнечное зубчатое колесо 26 первой планетарной передачи 10 или в водило 51 зубчатых колес планетарной передачи для второй планетарной передачи 12. Соединительный механизм 96 между первым главным валом 34 и выходным валом 20 отсоединен, так что первый главный вал 34 и выходной вал 20 могут вращаться свободно друг относительно друга. Поскольку солнечное зубчатое колесо 26 первой планетарной передачи, водило 51 зубчатых колес планетарной передачи для второй планетарной передачи 12 и выходной вал 20 коробки 2 передач на этой ступени остановлены, промежуточный вал 18 также остановлен. На первой ступени, четвертое зубчатое колесо 82 и третье зубчатое колесо 76 соединяются с промежуточным валом 18 посредством четвертого и третьего соединительных элементов 90 и 88, соответственно. Первое зубчатое колесо 64 и второе зубчатое колесо 70 отсоединяются от промежуточного вала 18. Таким образом, первому зубчатому колесу 64 и второму зубчатому колесу 70 разрешается свободно вращаться относительно промежуточного вала 18. Пятое зубчатое колесо 92 пятой зубчатой пары 21 стопорится на промежуточном валу 18 посредством пятого соединительного элемента 93.
Чтобы начинать вращение выходного вала 20 коробки 2 передач для цели приведения в движение транспортного средства 1, четвертая сателлитная шестерня 80 и четвертое зубчатое колесо 82 на промежуточном валу 18 должны переводиться в состояние вращения. Это достигается посредством принудительного вращения второго водила 51 зубчатых колес планетарной передачи. Когда второе водило 51 зубчатых колес планетарной передачи вращается, второй главный вал 36 также должен вращаться, и, таким образом, четвертая сателлитная шестерня 80, которая расположена на втором главном валу 36, также вращается. Второе водило 51 зубчатых колес планетарной передачи принудительно вращается посредством управления второй внутренней коронной шестерней 28 посредством второй электрической машины 16. Посредством приведения в действие второй электрической машины 16 и управления двигателем 4 внутреннего сгорания на подходящей скорости вращения двигателя, транспортное средство 1 начинает двигаться, когда второй главный вал 36 начинает вращаться. Когда второе водило 51 зубчатых колес планетарной передачи и второе солнечное зубчатое колесо 32 достигают идентичной скорости вращения, второе солнечное зубчатое колесо 32 стопорится посредством второго водила 51 зубчатых колес планетарной передачи с использованием второго соединительного устройства 58. Как указанно выше, второе соединительное устройство 58 предпочтительно адаптировано таким образом, что второе солнечное зубчатое колесо 32 и второе водило 51 зубчатых колес планетарной передачи механически зацепляются между собой. Альтернативно, второе соединительное устройство 58 может быть адаптировано в качестве тормоза проскальзывания или многодисковой муфты, которая плавно соединяет второе солнечное зубчатое колесо 32 со вторым водилом 51 зубчатых колес планетарной передачи. Когда второе солнечное зубчатое колесо 32 соединено со вторым водилом 51 зубчатых колес планетарной передачи, второе водило 51 зубчатых колес планетарной передачи должно вращаться со скоростью вращения, идентичной скорости вращения выходного вала 97 двигателя 4 внутреннего сгорания. Таким образом, крутящий момент, сформированный посредством двигателя 4 внутреннего сгорания, передается на выходной вал 20 коробки 2 передач через четвертую сателлитную шестерню 80, четвертое зубчатое колесо 82 на промежуточном валу 18, пятое зубчатое колесо 92 на промежуточном валу 18 и шестое зубчатое колесо 94 на выходном валу 20 коробки 2 передач. Транспортное средство 1 в силу этого начинает трогаться с места и приводиться в движение посредством первой передачи.
Каждая из первой, второй, третьей и четвертой зубчатых пар 60, 66, 72, 78 имеет передаточное отношение, которое адаптировано к требуемым характеристикам приведения в движение транспортного средства 1. Согласно примерному варианту осуществления, показанному на фиг.2, четвертая зубчатая пара 78 имеет наибольшее передаточное отношение по сравнению с первой, второй и третьей зубчатыми парами 60, 66, 72, что приводит к соединению четвертой зубчатой пары 78, когда низшая передача зацепляется. Вторая зубчатая пара 66 передает, аналогично четвертой зубчатой паре 78, крутящий момент между вторым главным валом 36 и промежуточным валом 18 и вместо этого может обеспечиваться наибольшим передаточным отношением, по сравнению с другими зубчатыми парами 60, 72, 78, по причине чего в таком варианте осуществления вторая зубчатая пара 66 может соединяться, когда низшая передача зацепляется.
Когда промежуточный вал 18 принудительно вращается посредством четвертого зубчатого колеса 82 на промежуточном валу 18, третье зубчатое колесо 76 на промежуточном валу 18 также должно вращаться. Таким образом, промежуточный вал 18 управляет третьим зубчатым колесом 76, которое, в свою очередь, управляет третьей сателлитной шестерней 74 на первом главном валу 34. Когда первый главный вал 34 вращается, первое солнечное зубчатое колесо 26 также должно вращаться, и за счет этого, в зависимости от скорости вращения выходного вала 97 двигателя 4 внутреннего сгорания и, таким образом, от скорости вращения первого водила 50 зубчатых колес планетарной передачи, оно заставляет первую внутреннюю коронную шестерню 22 и первый ротор 24 первой электрической машины 14 вращаться. В силу этого можно обеспечивать возможность первой электрической машине 14 работать в качестве генератора для того, чтобы подавать мощность в устройство 46 накопления энергии и/или подавать мощность во вторую электрическую машину 16. Также вторая электрическая машина 16 может работать в качестве генератора. Альтернативно, первая электрическая машина 14 может выдавать ввод крутящего момента посредством устройства 48 управления, управляющего первой электрической машиной 14, чтобы предоставлять крутящий момент приведения в движение.
Чтобы переключать передачи с первой передачи на вторую передачу, стопорение между вторым солнечным зубчатым колесом 32 и вторым водилом 51 зубчатых колес планетарной передачи должно прекращаться, что достигается посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов преобладает во второй планетарной передаче 12. Затем, второе соединительное устройство 58 управляется таким образом, что оно отсоединяет второе солнечное зубчатое колесо 32 и второе водило 51 зубчатых колес планетарной передачи друг от друга. Вторая передача соединена, посредством устройства 48 управления, управляющего двигателем 4 внутреннего сгорания таким образом, что синхронная скорость вращения возникает между первым водилом 50 зубчатых колес планетарной передачи и первым солнечным зубчатым колесом 26, чтобы достигать стопорения между первым водилом 50 зубчатых колес планетарной передачи и первым солнечным зубчатым колесом 26. Это достигается посредством управления первым соединительным устройством 56 таким образом, что первое водило 50 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 26 механически соединяются между собой. Альтернативно, первое соединительное устройство 56 может быть адаптировано в качестве тормоза проскальзывания или многодискового сцепления, которое плавно соединяет первое солнечное зубчатое колесо 26 с первым водилом 50 зубчатых колес планетарной передачи. Посредством синхронизации управления двигателем 4 внутреннего сгорания и второй и первой электрической машиной 14 и 16, соответственно, может выполняться мягкий и бесперебойный переход с первой передачи на вторую передачу.
Первый главный вал 34 теперь вращается под управлением посредством выходного вала 97 двигателя 4 внутреннего сгорания, и первый главный вал 34 теперь управляет третьей сателлитной шестерней 74. Таким образом, первое водило 50 зубчатых колес планетарной передачи управляет третьей сателлитной шестерней 74 через первое солнечное зубчатое колесо 26 и первый главный вал 34. Поскольку третье зубчатое колесо 76 находится в зацеплении с третьей сателлитной шестерней 74 и соединена с промежуточным валом 18, третье зубчатое колесо 76 должно управлять промежуточным валом 18, который, в свою очередь, управляет пятым зубчатым колесом 92 на промежуточном валу 18. Пятое зубчатое колесо 92, в свою очередь, управляет выходным валом 20 коробки 2 передач через шестое зубчатое колесо 94, которое расположено на выходном валу 20 коробки 2 передач. Транспортное средство 1 теперь управляется посредством второй передачи.
Когда промежуточный вал 18 принудительно вращается посредством третьего зубчатого колеса 76, четвертое зубчатое колесо 82 также должно вращаться. Таким образом, промежуточный вал 18 управляет четвертым зубчатым колесом 82, которое, в свою очередь, управляет четвертой сателлитной шестерней 80 на втором главном валу 36. Когда второй главный вал 36 вращается, второе водило 51 зубчатых колес планетарной передачи также должно вращаться, и за счет этого, в зависимости от скорости вращения выходного вала 97 двигателя 4 внутреннего сгорания и, таким образом, от скорости вращения в первом водиле 50 зубчатых колес планетарной передачи, оно заставляет вторую внутреннюю коронную шестерню 28 и второй ротор 30 второй электрической машины 16 вращаться. В силу этого можно обеспечивать возможность второй электрической машине 16 работать в качестве генератора для того, чтобы подавать мощность в устройство 46 накопления энергии и/или подавать мощность в первую электрическую машину 14. Вторая электрическая машина 16 также может выдавать ввод крутящего момента посредством устройства 48 управления, управляющего второй электрической машиной 16, чтобы предоставлять тяговый крутящий момент.
Чтобы переключаться со второй передачи на третью передачу, четвертое зубчатое колесо 82 на промежуточном валу 18 должно отсоединяться от промежуточного вала 18 посредством четвертого соединительного элемента 90, так что четвертое зубчатое колесо 82 может свободно вращаться относительно промежуточного вала 18. Затем, промежуточный вал 18 соединен со вторым зубчатым колесом 70 на промежуточном валу 18 через второй соединительный элемент 86. Чтобы достигать соединения промежуточного вала 18 и второго зубчатого колеса 70 на промежуточном валу 18, предпочтительно вторая электрическая машина 16 управляется таким образом, что синхронная скорость вращения возникает между промежуточным валом 18 и вторым зубчатым колесом 70 на промежуточном валу 18. Синхронная скорость вращения может определяться посредством измерения скорости вращения во втором роторе 30 во второй электрической машине 16 и посредством измерения скорости вращения на выходном валу 20. Таким образом, скорость вращения во втором главном валу 36 и скорость вращения в промежуточном валу 18 могут определяться посредством данных передаточных отношений. Скорость вращения соответствующих валов 18, 36 управляется, и когда синхронная скорость вращения возникает между промежуточным валом 18 и вторым зубчатым колесом 70, промежуточный вал 18 и второе зубчатое колесо 70 соединяются посредством второго соединительного элемента 86.
Чтобы завершать переключение со второй передачи на третью передачу, стопорение между первым солнечным зубчатым колесом 26 и первым водилом 50 зубчатых колес планетарной передачи должно прекращаться, что достигается посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов достигается в первой планетарной передаче 10, после чего первое соединительное устройство 56 управляется таким образом, что оно расцепляет первое солнечное зубчатое колесо 26 и первое водило 50 зубчатых колес планетарной передачи друг от друга. Затем, двигатель 4 внутреннего сгорания управляется таким образом, что синхронная скорость вращения возникает между вторым солнечным зубчатым колесом 32 и вторым водилом 51 зубчатых колес планетарной передачи, так что второе соединительное устройство 58 может зацепляться, чтобы за счет этого соединять второе солнечное зубчатое колесо 32 со вторым водилом 51 зубчатых колес планетарной передачи через соединительную втулку 57. Посредством синхронизации управления двигателем внутреннего сгорания 4 и второй и первой электрической машиной 14 и 16, соответственно, может выполняться мягкий и бесперебойный переход со второй на третью передачу.
Третье зубчатое колесо 76 отсоединено посредством управления первой электрической машиной 14 таким образом, что состояние по существу нулевого крутящего момента возникает между промежуточным валом 18 и третьим зубчатым колесом 76. Когда возникает состояние по существу нулевого крутящего момента, третье зубчатое колесо 76 отсоединяется от промежуточного вала 18 посредством управления третьим соединительным элементом 88 таким образом, что он высвобождает третье зубчатое колесо 76 от промежуточного вала 18. Затем, первая электрическая машина 14 управляется таким образом, что синхронная скорость вращения возникает между промежуточным валом 18 и первым зубчатым колесом 64. Когда возникает синхронная скорость вращения, первое зубчатое колесо 64 соединяется с промежуточным валом 18 посредством управления первым соединительным элементом 84 таким образом, что он соединяет первое зубчатое колесо 64 на промежуточном валу 18. Синхронная скорость вращения может определяться, поскольку скорость вращения первого ротора 24 в первой электрической машине 14 измеряется, и скорость вращения выходного вала 20 измеряется, после чего скорости вращения валов 18, 34 управляются таким образом, что возникает синхронная скорость вращения двигателя. Таким образом, скорость вращения первого главного вала 34 и скорость вращения промежуточного вала 18 могут определяться посредством данных передаточных отношений.
Второй главный вал 36 теперь вращается со скоростью вращения, идентичной скорости вращения выходного вала 97 двигателя 4 внутреннего сгорания, и второй главный вал 36 теперь управляет второй сателлитной шестерней 68 через второй главный вал 36. Поскольку второе зубчатое колесо 70 находится в зацеплении со второй сателлитной шестерней 68 и соединено с промежуточным валом 18, второе зубчатое колесо 70 должно управлять промежуточным валом 18, который, в свою очередь, управляет пятым зубчатым колесом 92 на промежуточном валу 18. Пятое зубчатое колесо 92, в свою очередь, управляет выходным валом 20 коробки 2 передач через шестое зубчатое колесо 94, которое расположено на выходном валу 20 коробки 2 передач. Транспортное средство 1 теперь приводится в движение на третьей передаче.
Когда промежуточный вал 18 принудительно вращается посредством второго зубчатого колеса 70 на промежуточном валу 18, первое зубчатое колесо 64 на промежуточном валу 18 также должно вращаться. Таким образом, промежуточный вал 18 управляет первым зубчатым колесом 64, которое, в свою очередь, управляет первой сателлитной шестерней 62 на первом главном валу 34. Когда первый главный вал 34 вращается, первое солнечное зубчатое колесо 26 также должно вращаться, и за счет этого, в зависимости от скорости вращения выходного вала 97 двигателя 4 внутреннего сгорания и, таким образом, от скорости вращения первого водила 50 зубчатых колес планетарной передачи, оно заставляет первую внутреннюю коронную шестерню 22 и первый ротор 24 второй электрической машины 16 вращаться. В силу этого можно обеспечивать возможность первой электрической машине 14 работать в качестве генератора для того, чтобы подавать мощность в устройство 46 накопления энергии и/или подавать мощность во вторую электрическую машину 16. Альтернативно, первая электрическая машина 14 может выдавать ввод крутящего момента посредством устройства 48 управления, управляющего первой электрической машиной 14, чтобы предоставлять крутящий момент приведения в движение.
Чтобы завершать переключение передач с третьей передачи на четвертую передачу, стопорение между вторым солнечным зубчатым колесом 32 и вторым водилом 51 зубчатых колес планетарной передачи должно прекращаться, что достигается посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов превалирует во второй планетарной передаче 12, после чего второе соединительное устройство 58 управляется таким образом, что оно расцепляет второе солнечное зубчатое колесо 32 и второе водило 51 зубчатых колес планетарной передачи друг от друга. Четвертая передача затем соединяется посредством устройства 48 управления, управляющего двигателем 4 внутреннего сгорания таким образом, что синхронная скорость вращения возникает между первым водилом 50 зубчатых колес планетарной передачи и первым солнечным зубчатым колесом 26, чтобы достигать стопорения между первым водилом 50 зубчатых колес планетарной передачи и первым солнечным зубчатым колесом 26. Это достигается посредством управления первым соединительным устройством 56 таким образом, что первое водило 50 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 26 механически соединяются между собой. Посредством синхронизации управления двигателем 4 внутреннего сгорания и второй и первой электрической машиной 14 и 16 может выполняться мягкий и бесперебойный переход с третьей передачи на четвертую передачу.
Первый главный вал 34 теперь вращается и управляется посредством выходного вала 97 двигателя 4 внутреннего сгорания, и первый главный вал 34 теперь управляет первой сателлитной шестерней 62. Таким образом, первое водило 50 зубчатых колес планетарной передачи управляет первой сателлитной шестерней 62 через первое солнечное зубчатое колесо 26 и первый главный вал 34. Поскольку первое зубчатое колесо 64 находится в зацеплении с первой сателлитной шестерней 62 и соединено с промежуточным валом 18, первое зубчатое колесо 64 должно управлять промежуточным валом 18, который, в свою очередь, управляет пятым зубчатым колесом 92 на промежуточном валу 18. Пятое зубчатое колесо 92, в свою очередь, управляет выходным валом 20 коробки 2 передач через шестое зубчатое колесо 94, которое расположено на выходном валу 20 коробки 2 передач. Транспортное средство 1 теперь приводится в движение на четвертой передаче.
Когда промежуточный вал 18 принудительно вращается посредством первого зубчатого колеса 64, второе зубчатое колесо 70 также должно вращаться. Таким образом, промежуточный вал 18 управляет вторым зубчатым колесом 70, которое, в свою очередь, управляет второй сателлитной шестерней 68 на втором главном валу 36. Когда второй главный вал 36 должен вращаться, второе водило 51 зубчатых колес планетарной передачи также должно вращаться, и за счет этого, в зависимости от скорости вращения выходного вала 97 двигателя 4 внутреннего сгорания и, таким образом, от скорости вращения в первом водиле 50 зубчатых колес планетарной передачи, оно заставляет вторую внутреннюю коронную шестерню 28 и второй ротор 30 второй электрической машины 16 вращаться. В силу этого можно обеспечивать возможность второй электрической машине 16 работать в качестве генератора для того, чтобы подавать мощность в устройство 46 накопления энергии и/или подавать мощность в первую электрическую машину 14. Вторая электрическая машина 16 также может выдавать ввод крутящего момента посредством устройства 48 управления, управляющего второй электрической машиной 16, чтобы предоставлять тяговый крутящий момент.
Чтобы переключать передачи с четвертой передачи на пятую передачу, первое зубчатое колесо 64 должно расцепляться от промежуточного вала 18, так что четвертая передача расцепляется. Это достигается посредством управления двигателем 4 внутреннего сгорания и первой электрической машиной 14 таким образом, что первое зубчатое колесо 64 переводится в состояние по существу нулевого крутящего момента относительно промежуточного вала 18. Когда возникает состояние по существу нулевого крутящего момента, первый соединительный элемент 84 расцепляется, так что первое зубчатое колесо 64 отсоединяется от промежуточного вала 18.
Затем, скорость вращения первого главного вала 34 синхронизируется со скоростью вращения выходного вала 20, после чего соединительный механизм 96 управляется таким образом, что он соединяет первый главный вал 34 с выходным валом 20.
Затем, двигатель 4 внутреннего сгорания и первая электрическая машина 14 управляются таким образом, что тяговый крутящий момент возникает через первый главный вал 34 и через соединительный механизм 96 и далее на выходной вал 20. Посредством уменьшения крутящего момента из второй электрической машины 16 пятый соединительный элемент 93 может переводиться в состояние по существу нулевого крутящего момента относительно промежуточного вала 18. Когда возникает состояние по существу нулевого крутящего момента, пятый соединительный элемент 93 расцепляется, так что пятое зубчатое колесо 92 пятой зубчатой пары 21 отсоединяется от промежуточного вала 18.
Затем, посредством второй электрической машины 16, скорость вращения промежуточного вала 18 синхронизируется со скоростью вращения третьего зубчатого колеса 76, после чего третий соединительный элемент 88 управляется таким образом, что он соединяет третье зубчатое колесо 76 с промежуточным валом 18. Когда это соединение завершено, тяговый крутящий момент может совместно использоваться между двигателем 4 внутреннего сгорания, первой электрической машиной 14 и второй электрической машиной 16. Затем, равновесие крутящих моментов создается в первой планетарной передаче 10, после чего первое соединительное устройство 56 отсоединяет первое водило 50 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 26 друг от друга. В завершение, второе водило 51 зубчатых колес планетарной передачи синхронизировано по скорости вращения со вторым солнечным зубчатым колесом 32, после чего второе соединительное устройство 58 соединяет второе водило 51 зубчатых колес планетарной передачи и второе солнечное зубчатое колесо 32 между собой.
Второй главный вал 36 теперь вращается под управлением выходного вала 97 двигателя 4 внутреннего сгорания, и второй главный вал 36 управляет второй сателлитной шестерней 68. Поскольку второе зубчатое колесо 70 находится в зацеплении со второй сателлитной шестерней 68 и соединено с промежуточным валом 18 через второй соединительный элемент 86, второе зубчатое колесо 70 должно управлять промежуточным валом 18, который, в свою очередь, управляет третьим зубчатым колесом 76 на промежуточном валу 18. Третье зубчатое колесо 76, в свою очередь, управляет первым главным валом 34 через третью сателлитную шестерню 74, и выходной вал 20 коробки 2 передач в силу этого управляется через соединительный механизм 96, который соединяет первый главный вал 34 и выходной вал 20 коробки 2 передач. Транспортное средство 1 теперь приводится в движение на пятой передаче.
Чтобы переключать передачи с пятой передачи на шестую передачу, стопорение между вторым солнечным зубчатым колесом 32 и вторым водилом 51 зубчатых колес планетарной передачи должно прекращаться, что достигается посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов достигается во второй планетарной передаче 12, после чего второе соединительное устройство 58 управляется таким образом, что оно отсоединяет второе солнечное зубчатое колесо 32 и второе водило 51 зубчатых колес планетарной передачи друг от друга. Шестая передача затем соединяется посредством устройства 48 управления, управляющего двигателем 4 внутреннего сгорания таким образом, что синхронная скорость вращения двигателя возникает между первым водилом 50 зубчатых колес планетарной передачи и первым солнечным зубчатым колесом 26, чтобы достигать стопорения между первым водилом 50 зубчатых колес планетарной передачи и первым солнечным зубчатым колесом 26. Это достигается посредством управления первым соединительным устройством 56 таким образом, что первое водило 50 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 26 механически соединяются между собой. Посредством синхронизации управления двигателем 4 внутреннего сгорания и второй и первой электрической машиной 14 и 16, соответственно, может выполняться мягкий и бесперебойный переход с пятой на шестую передачу.
Первый главный вал 34 теперь вращается под управлением выходного вала 97 двигателя 4 внутреннего сгорания, после чего первый главный вал 34 управляет выходным валом 20 коробки 2 передач через соединительный механизм 96, который соединяет первый главный вал 34 и выходной вал 20 коробки 2 передач. Транспортное средство 1 теперь приводится в движение на шестой передаче.
Чтобы переключаться с шестой на седьмую передачу, третье зубчатое колесо 76 на промежуточном валу 18 должно сначала отсоединяться от промежуточного вала 18 посредством третьего соединительного элемента 88, так что третье зубчатое колесо 76 может вращаться свободно относительно промежуточного вала 18. Затем, промежуточный вал 18 соединен с первым зубчатым колесом 64 на промежуточном валу 18 через первый соединительный элемент 84. Когда промежуточный вал 18 и первое зубчатое колесо 64 на промежуточном валу 18 имеют синхронную скорость вращения, первый соединительный элемент 84 управляется таким образом, что первое зубчатое колесо 64 и промежуточный вал 18 соединяются.
Чтобы завершать переключение с шестой передачи на седьмую передачу, стопорение между первым солнечным зубчатым колесом 26 и первым водилом 50 зубчатых колес планетарной передачи должно прекращаться, что достигается посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов достигается в первой планетарной передаче 10, после чего первое соединительное устройство 56 управляется таким образом, что оно расцепляет первое солнечное зубчатое колесо 26 и первое водило 50 зубчатых колес планетарной передачи друг от друга. Затем, двигатель 4 внутреннего сгорания управляется таким образом, что синхронная скорость вращения возникает между вторым солнечным зубчатым колесом 32 и вторым водилом 51 зубчатых колес планетарной передачи, так что второе соединительное устройство 58 может зацепляться, чтобы за счет этого соединять второе солнечное зубчатое колесо 32 со вторым водилом 51 зубчатых колес планетарной передачи через соединительную втулку 57. Посредством синхронизации управления двигателем внутреннего сгорания 4 и второй и первой электрической машиной 14 и 16, соответственно, может выполняться мягкий и бесперебойный переход с шестой на седьмую передачу.
Второй главный вал 36 теперь вращается со скоростью вращения, идентичной скорости вращения выходного вала 97 двигателя 4 внутреннего сгорания, и второй главный вал 36 управляет второй сателлитной шестерней 68. Поскольку второе зубчатое колесо 70 находится в зацеплении со второй сателлитной шестерней 68 и соединен с промежуточным валом 18, второе зубчатое колесо 70 должно управлять промежуточным валом 18, который, в свою очередь, управляет пятым зубчатым колесом 64 на промежуточном валу 18. Первое зубчатое колесо 64, в свою очередь, управляет первым главным валом 34 через первую сателлитную шестерню 62, и выходной вал 20 коробки 2 передач в силу этого управляется через соединительный механизм 96, который соединяет первый главный вал 34 и выходной вал 20 коробки 2 передач. Транспортное средство 1 теперь приводится в движение на седьмой передаче.
Согласно вышеприведенному варианту осуществления, коробка 2 передач содержит сателлитные шестерни 62, 68, 74, 80 и зубчатые колеса 64, 70, 76, 82, расположенные на главных валах 34, 36 и промежуточном валу 18, соответственно, чтобы передавать скорость вращения и крутящий момент. Тем не менее, можно использовать другой тип трансмиссии, к примеру, цепные и ременные приводы, чтобы передавать скорость вращения и крутящий момент в коробке 2 передач.
Трансмиссионное устройство 19 имеет четыре зубчатых пары 60, 66, 72, 78 согласно примерному варианту осуществления. Тем не менее, трансмиссионное устройство 19 может содержать любое число зубчатых пар.
Как описано выше, крутящий момент извлекается из коробки 2 передач из выходного вала 20. Также можно извлекать крутящий момент непосредственно из первого главного вала или второго главного вала 34, 36 либо непосредственно из промежуточного вала 18. Крутящий момент также может извлекаться параллельно из двух или всех трех валов 18, 34, 36 одновременно.
Фиг.3 иллюстрирует гибридную силовую передачу 3 согласно фиг.2 в упрощенном виде, на котором некоторые компоненты исключены для ясности. G1 на фиг.3 состоит по меньшей мере из одной зубчатой пары, соединенной с первым главным валом 34 и, таким образом, с первой планетарной передачей 10, и зубчатая пара G2 состоит по меньшей мере из одной зубчатой пары, соединенной со вторым главным валом 36 и, таким образом, со второй планетарной передачей 12. Эти зубчатые пары G1, G2 также соединены с выходным валом 20. Эти зубчатые пары G1, G2 надлежащим образом соединяются с выходным валом 20 через промежуточный вал 18. G1 и G2, соответственно, могут состоять из одной или нескольких зубчатых пар. Зубчатая пара G1, соединенная с первой планетарной передачей 10, например, может состоять из первой зубчатой пары 60 и/или третьей зубчатой пары 72, как описано на фиг.2. Зубчатая пара G2, соединенная со второй планетарной передачей 12, например, может состоять из второй зубчатой пары 66 и/или четвертой зубчатой пары 78, как описано на фиг.2. Дополнительно, показана по меньшей мере одна зубчатая пара G3, соединенная с выходным валом 20 и промежуточным валом 18, которая может состоять из пятой зубчатой пары 21, описанной на фиг.2. G3 может состоять из одной или нескольких зубчатых пар. Альтернативно, крутящий момент может извлекаться непосредственно из промежуточного вала 18, который в силу этого составляет выходной вал.
Далее описываются варианты осуществления для управления гибридной силовой передачей 3 для оптимизации расхода топлива в гибридной силовой передаче 3. Гибридная силовая передача 3 содержит двигатель 4 внутреннего сгорания; коробку 2 передач с входным валом 8 и выходным валом 20; первую планетарную передачу 10, соединенную с входным валом 8 и первым главным валом 34; вторую планетарную передачу 12, соединенную с первой планетарной передачей 10 и вторым главным валом 36; первую электрическую машину 14, соединенную с первой планетарной передачей 10; вторую электрическую машину 16, соединенную со второй планетарной передачей 12; по меньшей мере, одну зубчатую пару G1, соединенную с первым главным валом 34 и, таким образом, с первой планетарной передачей 10 и выходным валом 20; и по меньшей мере одну зубчатую пару G2, соединенную со вторым главным валом 36 и, таким образом, со второй планетарной передачей 12 и выходным валом 20, при этом двигатель 4 внутреннего сгорания соединен с первым водилом 50 зубчатых колес планетарной передачи, расположенным в первой планетарной передаче 10, через входной вал 8 коробки 2 передач, и при этом второй главный вал 36 соединен с водилом 51 зубчатых колес планетарной передачи, расположенным во второй планетарной передаче 12.
Зубчатая пара G1, соединенная с первой планетарной передачей 10, соединена с промежуточным валом 18, соединенным с выходным валом 20, и зубчатая пара G2, 78, которая соединена со второй планетарной передачей 12, также соединена с промежуточным валом 18. Таким образом, крутящий момент может передаваться между первой и второй планетарными передачами 10, 12, через промежуточный вал 18, в выходной вал 20. В зависимости от того, какая шестерня зацепляется, первое водило 50 зубчатых колес планетарной передачи, расположенное в первой планетарной передаче 10, и первое солнечное зубчатое колесо 26 соединяются, либо второе водило 51 зубчатых колес планетарной передачи, расположенное во второй планетарной передаче 12, и второе солнечное зубчатое колесо 32 соединяются.
Чтобы оптимизировать расход топлива гибридной силовой передачи 3, сначала обеспечивается то, что подвижные части первой планетарной передачи 10 отсоединяются друг от друга и что подвижные части второй планетарной передачи 12 отсоединяются друг от друга. Первое водило 50 зубчатых колес планетарной передачи, расположенное в первой планетарной передаче 10, и первое солнечное зубчатое колесо 26 в силу этого отсоединяются друг от друга, либо второе водило 51 зубчатых колес планетарной передачи и второе солнечное зубчатое колесо 32 отсоединяются друг от друга, в зависимости от того, какие из них соединены. Отсоединение, связанное с первым водилом зубчатого колеса планетарной передачи и первым солнечным зубчатым колесом, достигается посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов достигается в первой планетарной передаче 10, после чего первое соединительное устройство 56 переключается таким образом, что первое водило 50 зубчатых колес планетарной передачи и первое солнечное зубчатое колесо 26 отсоединяются друг от друга. Отсоединение, связанное со вторым водилом 51 зубчатых колес планетарной передачи и второе солнечное зубчатое колесо 32, достигается посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов достигается во второй планетарной передаче 12, после чего второе соединительное устройство 58 переключается таким образом, что второе водило 51 зубчатых колес планетарной передачи и второе солнечное зубчатое колесо 32 отсоединяются друг от друга. Затем двигатель 4 внутреннего сгорания доводится до заданной частоты nice вращения двигателя, и первая и вторая электрические машины 14, 16 управляются таким образом, что требуемый крутящий момент TDrv достигается на выходном валу 20. Предпочтительно, заданная частота nice вращения двигателя соответствует фактически скорости вращения двигателя на холостом ходу для двигателя 4 внутреннего сгорания. Требуемый крутящий момент TDrv на выходном валу 20 надлежащим образом определяется в устройстве 48 управления. Ниже приводится описание того, как, для известных значений, в числе прочего, частоты nice вращения двигателя, требуемого крутящего момента TDrv и запрашиваемого полного потребления PEM мощности первой и второй электрических машин 14, 16, можно получать посредством уравнений то, как должны управляться первая и вторая электрические машины 14, 16. Управление гибридной силовой передачей 3 и ее составными частями для оптимизации расхода топлива, надлежащим образом выполняется посредством устройства 48 управления.
В случаях, если зубчатая пара G3, которая соединена с промежуточным валом 18 и выходным валом 20, соединена и стопорится на промежуточном валу 18, и соединительный механизм S6, 96, расположенный между первым главным валом 34 и выходным валом 20, является открытым, крутящий момент TDrv, требуемый в выходном валу 20 коробки передач, также называемый "запрошенным крутящим моментом силовой передачи", может получаться через комбинацию крутящего момента из первой и второй электрических машин 14, 16, согласно нижеприведенному уравнению E1:
где TEM1 является крутящим моментом, выдаваемым посредством первой электрической машины 14, и TEM2 является крутящим моментом, выдаваемым посредством второй электрической машины 16, S1 является числом зубьев на первом солнечном зубчатом колесе 26, R1 является числом зубьев на первой внутренней коронной шестерне 22, S2 является числом зубьев на втором солнечном зубчатом колесе, и R2 является числом зубьев на второй внутренней коронной шестерне 28. G1 является передаточным отношением между первым главным валом 34 и промежуточным валом 18, G2 является передаточным отношением между вторым главным валом 36 и промежуточным валом 18, и G3 является передаточным отношением между промежуточным валом 18 и выходным валом 20 для выбранных соединенных зубчатых пар.
В случаях, если зубчатая пара G3, которая соединена с промежуточным валом 18 и выходным валом 20, отсоединяется от промежуточного вала 18, и соединительный механизм S6, 96 стопорится и за счет этого соединяет первый главный вал 34 и выходной вал 20, крутящий момент TDrv на выходном валу 20 коробки передач может получаться из нижеприведенного уравнения E1':
Согласно одному варианту осуществления, крутящий момент TDrv, требуемый на выходном валу 20, представляет собой положительный крутящий момент. Если гибридная силовая передача 3 расположен в транспортном средстве 1, это означает то, что транспортное средство 1 приведено в движение посредством первой и второй электрических машин 14, 16. Первая и вторая электрические машины 14, 16 за счет этого объединенно расходуют полную мощность PEM за исключением потерь, которая получается из нижеприведенного уравнения E2:
где nEM1 представляет собой скорость вращения двигателя первой электрической машины 14, и nEM2 представляет собой скорость вращения двигателя второй электрической машины 16. Первая и вторая электрические машины 14, 16 предпочтительно управляются на основе запрашиваемого полного потребления PEM мощности первой и второй электрических машин 14, 16 и крутящего момента TDrv, требуемого на выходном валу 20. Требуемое полное потребление PEM мощности надлежащим образом является заданным параметром. Для указанного требуемого потребления PEM мощности и известного требуемого крутящего момента TDrv на выходном валу 20, два уравнения E1, E2, или альтернативно, E1', E2' могут решаться, чтобы за счет этого определять то, до достижения какого крутящего момента должны управляться первая и вторая электрическая машина 14, 16, соответственно.
Согласно одному варианту осуществления, крутящий момент TDrv, требуемый на выходном валу 20, представляет собой отрицательный крутящий момент. Если гибридная силовая передача 3 расположена в транспортном средстве 1, это влечет за собой то, что имеется запрос на то, чтобы замедлять транспортное средство 1. Когда первая и вторая электрические машины 14, 16 управляются таким образом, чтобы достигать отрицательного крутящего момента на выходном валу 20, на двигатель 4 внутреннего сгорания оказывает влияние крутящий момент TFW, который может получаться согласно нижеприведенному уравнению E3:
Чтобы заставлять двигатель 4 внутреннего сгорания вращаться с заданной частотой nice вращения двигателя, определяется крутящий момент TFW, требуемый для достижения указанной частоты nice вращения двигателя. Первая и вторая электрические машины 14, 16 в силу этого предпочтительно управляются на основе крутящего момента TFW, который должен действовать на двигатель 4 внутреннего сгорания, и крутящего момента TDrv, требуемого на выходном валу 20. Для известного требуемого крутящего момента TDrv на выходном валу 20 и определенного крутящего момента TFW в двигателе 4 внутреннего сгорания, два уравнения E1, E3 могут решаться, чтобы за счет этого определять крутящий момент, для достижения которого должны управляться первая и вторая электрическая машина 14, 16, соответственно. В силу этого, первая и вторая электрические машины 14, 16 могут управляться таким образом, что крутящий момент TDrv, требуемый на выходном валу 20, достигается, при этом одновременно двигатель 4 внутреннего сгорания поддерживает заданную частоту nice вращения двигателя без подачи топлива в двигатель 4 внутреннего сгорания. Крутящий момент TFW, который должен действовать на двигатель 4 внутреннего сгорания, может определяться посредством регулятора 108 скорости вращения (см. фиг.2).
Фиг.4 показывает блок-схему последовательности операций, связанную со способом управления гибридной силовой передачей 3 для оптимизации расхода топлива в двигателе 4 внутреннего сгорания, расположенном в гибридной силовой передаче 3. Гибридная силовая передача 3 содержит коробку 2 передач с входным валом 8 и выходным валом 20; первую планетарную передачу 10, соединенную с входным валом 8 и первым главным валом 34; вторую планетарную передачу 12, соединенную с первой планетарной передачей 10 и вторым главным валом 36; первую электрическую машину 14, соединенную с первой планетарной передачей 10; вторую электрическую машину 16, соединенную со второй планетарной передачей 12; по меньшей мере, одну зубчатую пару G1, 60, 72, соединенную с первым главным валом 34 и, таким образом, с первой планетарной передачей 10 и выходным валом 20; и по меньшей мере одну зубчатую пару G2, 66, 78, соединенную со вторым главным валом 36 и, таким образом, со второй планетарной передачей 12 и выходным валом 20, при этом двигатель 4 внутреннего сгорания соединен с первым водилом 50 зубчатых колес планетарной передачи, расположенным в первой планетарной передаче 10, через входной вал 8 коробки 2 передач, и при этом второй главный вал 36 соединен с водилом 51 зубчатых колес планетарной передачи, расположенным во второй планетарной передаче 12. Зубчатая пара G1, 60, 72, соединенная с первой планетарной передачей 10 и, таким образом, с первым главным валом 34, соединена с промежуточным валом 18, который соединен с выходным валом 20, и зубчатая пара G2, 66, 78 соединена со второй планетарной передачей 12 и, таким образом, со вторым главным валом 36, а также соединена с промежуточным валом. Таким образом, крутящий момент может передаваться между первой и второй планетарными передачами 10, 12, через промежуточный вал 18, в выходной вал 20. В зависимости от того, какая шестерня зацепляется, первое водило 50 зубчатых колес планетарной передачи, расположенное в первой планетарной передаче 10, и первое солнечное зубчатое колесо 26 соединяются, либо второе водило 51 зубчатых колес планетарной передачи, расположенное во второй планетарной передаче 12, и второе солнечное зубчатое колесо 32 соединяются.
Способ содержит этапы:
a) обеспечения того, что подвижные части 22 из первой планетарной передачи 10, 26, 50 отсоединяются друг от друга, и того, что подвижные части 28, 32, 51 второй планетарной передачи 12 отсоединяются друг от друга;
b) доведения двигателя 4 внутреннего сгорания до заданной частоты nice вращения двигателя; и
c) управления первой и второй электрическими машинами 14, 16 таким образом, что требуемый крутящий момент TDrv достигается на выходном валу 20.
Таким образом, расход топлива гибридной силовой передачи может быть оптимизирован посредством создания бесступенчатой, экстремальной повышающей передачи.
Надлежащим образом, подвижные части 22, 26, 50 в первой планетарной передаче отсоединяются друг от друга посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов достигается в первой планетарной передаче 10, при этом первое соединительное устройство 56 переключается таким образом, что первое водило 50 зубчатых колес планетарной передачи, расположенное в первой планетарной передаче 10, и первое солнечное зубчатое колесо 26 отсоединяются друг от друга.
Надлежащим образом, подвижные части 28, 32, 51, расположенные во второй планетарной передаче 12, отсоединяются друг от друга посредством управления первой и/или второй электрической машиной 14, 16 таким образом, что равновесие крутящих моментов достигается во второй планетарной передаче 12, при этом второе соединительное устройство 58 переключается таким образом, что второе водило 51 зубчатых колес планетарной передачи, расположенное во второй планетарной передаче 12, и второе солнечное зубчатое колесо 32 отсоединяются друг от друга.
Согласно одному варианту осуществления, заданная частота nice вращения двигателя на этапе b) по существу соответствует скорости вращения двигателя на холостом ходу для двигателя 4 внутреннего сгорания. Заданная скорость вращения двигателя может представлять собой требуемую скорость вращения двигателя в определенном рабочем режиме. Заданная скорость вращения двигателя может находиться в интервале +/-100 об/мин около скорости вращения двигателя на холостом ходу. Заданная скорость вращения двигателя может находиться в интервале +/-200 об/мин около скорости вращения двигателя на холостом ходу. Заданная скорость вращения двигателя может находиться в применимом интервале около скорости вращения двигателя на холостом ходу либо в интервале, который ниже скорости вращения двигателя на холостом ходу или выше скорости вращения двигателя на холостом ходу. Скорость вращения двигателя на холостом ходу может составлять 500 об/мин. Скорость вращения двигателя на холостом ходу может составлять 1000 об/мин. Заданная скорость вращения двигателя может находиться в интервале 300-700 об/мин, предпочтительно в интервале 400-600 об/мин. Таким образом, заданная скорость вращения двигателя представляет собой скорость вращения двигателя, которая приводит к уменьшению расхода топлива.
Согласно одному варианту осуществления способа, крутящий момент TDrv, требуемый на выходном валу 20, представляет собой положительный крутящий момент. В этом случае, этап c) надлежащим образом содержит управление первой и второй электрической машиной 14, 16 на основе запрашиваемого полного потребления PEM мощности первой и второй электрической машины 14, 16. Надлежащим образом, первая и вторая электрические машины 14, 16 также управляются на основе крутящего момента TDrv, требуемого на выходном валу 20. Первая и вторая электрические машины 14, 16 надлежащим образом управляются таким образом, что они выдают крутящий момент TEM1 и TEM2, который может определяться посредством вычисления уравнений[1] и[2] или[1'] и[2], как описано на фиг.3.
Согласно одному варианту осуществления способа, крутящий момент TDrv, требуемый на выходном валу 20, представляет собой отрицательный крутящий момент. В этом случае этап c) надлежащим образом содержит управление первой и второй электрической машиной 14, 16 на основе крутящего момента TFW, который должен действовать на двигатель 4 внутреннего сгорания, чтобы достигать заданной частоты nice вращения двигателя. Надлежащим образом, первая и вторая электрические машины 14, 16 также управляются на основе крутящего момента TDrv, требуемого на выходном валу 20. Первая и вторая электрическая машина 14, 16 надлежащим образом управляются таким образом, что они выдают крутящий момент TEM1 и TEM2, который может определяться посредством вычисления уравнений [1] и [3], описанных на фиг.3.
Надлежащим образом, крутящий момент TFW, который должен действовать на двигатель 4 внутреннего сгорания, определяется посредством регулятора 108 скорости вращения.
Согласно изобретению, предоставляется компьютерная программа P, сохраненная в устройстве 48 управления и/или компьютере 53, которая может содержать процедуры для управления гибридной силовой передачей 3 согласно настоящему изобретению.
Программа P может сохраняться в исполняемом виде или в сжатом виде в запоминающем устройстве M и/или в оперативном запоминающем устройстве R.
Изобретение также относится к компьютерному программному продукту, содержащему программный код, сохраненный на носителе, считываемом посредством компьютера, чтобы осуществлять этапы способа, указываемые выше, когда указанный программный код выполняется в устройстве 48 управления или в другом компьютере 53, соединенном с устройством 48 управления. Указанный программный код может сохраняться энергонезависимым способом на указанном носителе, считываемом посредством компьютера 53.
Компоненты и признаки, указанные выше, в пределах изобретения могут комбинироваться между указываемыми различными вариантами осуществления.
Изобретение относится к гибридным силовым передачам. В способе управления гибридной силовой передачей отсоединяют подвижные части первой и второй планетарной передачи друг от друга; доводят двигатель внутреннего сгорания до заданной частоты вращения и управляют первой и второй электрической машиной так, что требуемый крутящий момент достигается на выходном валу. Решение направлено на беспрерывную передачу крутящего момента при переключении передач и оптимизацию расхода топлива. 3 н. и 9 з.п. ф-лы, 4 ил.
1. Способ управления гибридной силовой передачей (3) для оптимизации расхода топлива, при этом указанная гибридная силовая передача (3) содержит коробку (2) передач с входным валом (8) и выходным валом (20); первую планетарную передачу (10), соединенную с входным валом (8) и первым главным валом (34); вторую планетарную передачу (12), соединенную с первой планетарной передачей (10) и вторым главным валом (36); первую электрическую машину (14), соединенную с первой планетарной передачей (10); вторую электрическую машину (16), соединенную со второй планетарной передачей (12); по меньшей мере одну зубчатую пару (G1, 60, 72), соединенную с первым главным валом (34) и, таким образом, с первой планетарной передачей (10) и выходным валом (20); и по меньшей мере одну зубчатую пару (G2, 66, 78), соединенную со вторым главным валом (36) и, таким образом, со второй планетарной передачей (12) и выходным валом (20), при этом двигатель (4) внутреннего сгорания, через входной вал (8), соединен с первым водилом (50) зубчатых колес планетарной передачи, расположенным в первой планетарной передаче (10), а второй главный вал (36) соединен с водилом (51) зубчатых колес планетарной передачи, расположенным во второй планетарной передаче (12), отличающийся тем, что он включает этапы, на которых:
a) обеспечивают отсоединение подвижных частей (22, 26, 50) первой планетарной передачи (10) друг от друга, и отсоединение подвижных частей (28, 32, 51) второй планетарной передачи (12) друг от друга,
b) доводят двигатель (4) внутреннего сгорания до заданной частоты (nice) вращения двигателя; и
c) управляют первой и второй электрической машиной (14; 16) таким образом, что требуемый крутящий момент (TDrv) достигается на выходном валу (20).
2. Способ по п.1, отличающийся тем, что на этапе a) первой и/или второй электрической машиной (14; 16) управляют таким образом, что равновесие крутящих моментов достигается в первой планетарной передаче (10), после чего первое соединительное устройство (56) переключают таким образом, что первое водило (50) зубчатых колес планетарной передачи и первое солнечное зубчатое колесо (26) отсоединяются друг от друга.
3. Способ по п.1, отличающийся тем, что на этапе a) первой и/или второй электрической машиной (14; 16) управляют таким образом, что равновесие крутящих моментов достигается во второй планетарной передаче (12), после чего второе соединительное устройство (58) переключают таким образом, что второе водило (51) зубчатых колес планетарной передачи и второе солнечное зубчатое колесо (32) отсоединяются друг от друга.
4. Способ по любому из предшествующих пунктов, отличающийся тем, что заданная частота (nice) вращения двигателя на этапе b) по существу соответствует скорости вращения двигателя на холостом ходу для двигателя (4) внутреннего сгорания.
5. Способ по любому из пп. 1-4, отличающийся тем, что заданная частота (nice) вращения двигателя на этапе b) составляет между 300 и 700 об/мин.
6. Способ по любому из предшествующих пунктов, отличающийся тем, что крутящий момент (TDrv), требуемый на выходном валу (20) на этапе c) представляет собой положительный крутящий момент.
7. Способ по п.6, отличающийся тем, что на этапе c) первой и второй электрической машиной (14; 16) управляют на основании заданного запрашиваемого полного потребления (PEM) мощности первой и второй электрической машины (14; 16).
8. Способ по любому из пп. 1-5, отличающийся тем, что крутящий момент (TDrv), требуемый на выходном валу (20) на этапе c), представляет собой отрицательный крутящий момент.
9. Способ по п.8, отличающийся тем, что на этапе c) первой и второй электрической машиной (14; 16) управляют на основании крутящего момента (TFW), действующего на двигатель (4) внутреннего сгорания.
10. Способ по п.9, отличающийся тем, что крутящий момент (TFW), который действует на двигатель (4) внутреннего сгорания, определяют посредством регулятора (108) скорости вращения.
11. Транспортное средство с гибридной силовой передачей, содержащей коробку (2) передач с входным валом (8) и выходным валом (20); первую планетарную передачу (10), соединенную с входным валом (8) и первым главным валом (34); вторую планетарную передачу (12), соединенную с первой планетарной передачей (10) и вторым главным валом (36); первую электрическую машину (14), соединенную с первой планетарной передачей (10); вторую электрическую машину (16), соединенную со второй планетарной передачей (12); по меньшей мере одну зубчатую пару (G1, 60, 72), соединенную с первым главным валом (34) и, таким образом, с первой планетарной передачей (10) и выходным валом (20); и по меньшей мере одну зубчатую пару (G2, 66, 78), соединенную со вторым главным валом (36) и, таким образом, со второй планетарной передачей (12) и выходным валом (20), при этом двигатель (4) внутреннего сгорания соединен с первым водилом (50) зубчатых колес планетарной передачи, расположенным в первой планетарной передаче (10), через входной вал (8) коробки (2) передач, и при этом второй главный вал (36) соединен со вторым водилом (51) зубчатых колес планетарной передачи, расположенным во второй планетарной передаче (12), отличающееся тем, что гибридная силовая передача (3) выполнена с возможностью управления согласно способу по любому из пп. 1-10.
12. Электронное устройство управления гибридной силовой передачей, содержащее код компьютерной программы для того, чтобы заставлять упомянутое устройство управления выполнять этапы способа по любому из пп. 1-10.
US 2003166429 A1, 04.09.2003 | |||
US 5730676 A, 24.03.1998 | |||
DE 102006025525 A1, 06.12.2007 | |||
WO 2012073651 A1, 07.06.2012 | |||
US 2002045507 A1, 18.04.2002. |
Авторы
Даты
2018-05-14—Публикация
2015-03-17—Подача