УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН Российский патент 2018 года по МПК E21B47/10 

Описание патента на изобретение RU2654099C1

Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано для контроля параметров потока продукции газовых, газоконденсатных и нефтяных скважин, а именно для измерения дебита продукции, раздельно дебита газа и дебита жидкости (газового конденсата, нефти), измерения количества жидких и твердых примесей (раздельно расхода примесей воды и удельного содержания примесей песка) без сепарации потока, а также измерения температуры и давления в трубопроводе контролируемого потока.

Известно устройство для контроля расхода газа и количества примесей в продукции газовых скважин, содержащее два пьезокерамических датчика пульсаций давления потока, два компаратора уровня, два формирователя импульсов, первый, второй и третий активные полосовые фильтры (RU п. 2249690, опубл. 10.04.2005. Бюл. № 10).

Указанное устройство обеспечивает измерение расхода газа и раздельно количества песка и водоглинопесчаной смеси в продукции газовых скважин в широком диапазоне изменения режимов их работы.

Однако известное устройство не предназначено для измерения дебита жидкости (газового конденсата, нефти) в составе продукции газоконденсатных и нефтяных скважин. Кроме того, использование данного устройства с целью измерения количества примесей связано с необходимостью получения априорной информации о составе примесей воды и примесей песка.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является устройство для контроля расхода компонентов продукции скважин, содержащее измерительный модуль, включающий один пьезокерамический датчик пульсаций давления потока и согласующие усилители нижних и верхних частот, а также вторичный измерительный прибор, включающий три активных полосовых фильтра, управляемый масштабирующий усилитель, аналого-цифровой преобразователь, два формирователя импульсов и микропроцессорный контроллер с дисплеем и клавиатурой (RU п. 2151288, опубл. 20.06.2000. Бюл. № 17). Устройство предназначено для одновременного раздельного измерения расхода газа и количества песка и водоглинопесчаной смеси в продукции эксплуатационных газовых скважин.

Недостатками известного устройства являются его ограниченные функциональные возможности, так как устройство не предназначено для измерения дебита жидкости (газового конденсата, нефти) в составе продукции газоконденсатных и нефтяных скважин. Кроме того, данное устройство позволяет подсчитывать только количество соударений частиц примесей песка и примесей воды, регистрируемых пьезокерамическим датчиком, что не позволяет получить информацию собственно о расходе примесей воды и удельном содержании примесей песка в общем потоке продукции газовых и газоконденсатных скважин без дополнительной информации о составе примесей воды и примесей песка.

Технической проблемой, на решение которой направлено настоящее изобретение, является обеспечение получения информации о дебите продукции, раздельно дебите газа и дебите жидкости (газового конденсата, нефти), а также о количестве примесей (раздельно расхода примесей воды и удельного содержания примесей песка) в потоке продукции газовых, газоконденсатных и нефтяных скважин в широком диапазоне изменения режимов работы нефтегазовых скважин по дебиту.

Указанная проблема решается тем, что устройство для контроля расхода компонентов продукции скважин содержит датчики давления и температуры контролируемого потока и пьезокерамический датчик пульсаций давления потока, подключенный к входу широкополосного согласующего усилителя, выходы которого подключены к входам первого, второго и третьего активных полосовых фильтров, причем выход первого активного полосового фильтра подключен к первому входу усилителя с программируемым коэффициентом усиления, выход второго подключен к входу первого детектора, а выход третьего - к входу второго детектора, выход усилителя с программируемым коэффициентом усиления подключен к первому входу двухканального аналого-цифрового преобразователя, выход первого детектора подключен через последовательно соединенные интегратор и масштабирующий усилитель ко второму входу двухканального аналого-цифрового преобразователя, а выход второго детектора подключен через компаратор уровня к первому входу формирователя импульсов, ко второму входу которого подключен генератор тактовых импульсов эталонной частоты, выходы двухканального аналого-цифрового преобразователя, масштабирующего усилителя, формирователя импульсов и датчиков давления и температуры контролируемого потока подключены, соответственно, к первому, второму, третьему, четвертому и пятому информационным входам микропроцессорного контроллера, указанные выходы которого подключены к входам цифрового интерфейса, а его управляющий выход подключен ко второму входу усилителя с программируемым коэффициентом усиления.

Достигаемый технический результат заключается в обеспечении получения дополнительно к информации о количестве соударений частиц примесей песка и примесей воды в единицу времени, определяемой по превышению сигнала ударного воздействия заранее установленного порогового значения, информации о параметрах ударного воздействия, определяемых массой и скоростью частиц примесей, за счет формирования сигналов, пропорциональных интенсивности ударного воздействия.

Функционирование предлагаемого устройства осуществляется в соответствии с зависимостями, связывающими расходы газа и жидкости (газового конденсата и нефти) со среднеквадратическим значением сигнала в соответствующих информативных полосах частот в звуковом диапазоне, полученными на основе эмпирических данных и представленными в аналитической форме. Расход примесей воды - со среднеквадратическим значением сигнала в соответствующей информативной полосе частот в ультразвуковом диапазоне, а удельное содержание примесей песка - со средним значением частоты прямоугольных импульсов на выходе формирователя импульсов, которое связано с интенсивностью ударного воздействия примесей песка:

где Qг - дебит газа;

Qж - дебит жидкости;

Qв - расход примесей воды;

Sn - удельное содержание примесей песка;

(G1, G2) - среднеквадратические значения сигналов в первой и второй информативных полосах частот в звуковом диапазоне;

G3 - средневыпрямленное значение сигнала в третьей информативной полосе частот в ультразвуковом диапазоне;

FИ - среднее значение частоты прямоугольных импульсов на выходе формирователя, пропорциональное средневыпрямленному значению сигнала ударного воздействия песчинок в четвертой информативной полосе частот в ультразвуковом диапазоне.

А, В, С, D - коэффициенты, определяемые на стадии калибровки по месту эксплуатации устройства, учитывающие геометрические характеристики измерительного участка, связанные с индивидуальными особенностями обвязки скважины, и влияние термобарических условий на конкретной скважине.

Расчет среднеквадратического значения сигнала в соответствующей информативной полосе производится по формуле:

где j=1, 2 - номер информативной полосы частот;

М - количество циклов измерения;

Xi - мгновенное значение сигнала в информативной полосе частот.

Расчет средневыпрямленного значения сигнала в соответствующей информативной полосе частот производится по формуле:

Сущность предлагаемого устройства поясняется чертежами, где: на фиг. 1 представлена блок-схема устройства для контроля параметров потока продукции нефтегазовых скважин, на фиг. 2 представлен алгоритм работы микропроцессорного контроллера.

Устройство состоит из пьезокерамического датчика пульсаций давления потока 1, широкополосного согласующего усилителя 2, первого, второго и третьего активных полосовых фильтров 3, 4 и 5, соответственно, усилителя с программируемым коэффициентом усиления 6, первого и второго детекторов 7 и 8, соответственно, интегратора 9, компаратора уровня 10, масштабирующего усилителя постоянного тока 11, генератора тактовых импульсов эталонной частоты 12, формирователя импульсов 13, двухканального аналого-цифрового преобразователя 14, микропроцессорного контроллера 15, а также цифрового интерфейса 16. Помимо этого, устройство содержит измерительный преобразователь температуры 17, аналого-цифровой преобразователь 18 и датчик давления 19 с цифровым выходом.

Устройство устанавливается на трубопроводе 20 на определенном расстоянии от специального сужающего устройства 21, предназначенного для более интенсивной турбулизации и формирования заданной структуры потока.

Устройство работает следующим образом.

Сигнал с пьезокерамического датчика 1 поступает на широкополосный согласующий усилитель 2, далее происходит разделение на три измерительных канала с помощью трех активных полосовых фильтров 3, 4 и 5. Усилитель 2 предназначен для согласования высокоомного сопротивления пьезокерамического датчика с входным сопротивлением активных полосовых фильтров 3, 4 и 5.

Формирование информационного канала измерения дебита газа и дебита жидкости происходит следующим образом. Электрический сигнал с согласующего усилителя 2 поступает на первый активный полосовой фильтр 3, который формирует информативную полосу частот канала измерения дебита. Он выделяет и усиливает сигнал с частотными составляющими в диапазоне звуковых частот (десятки-сотни герц). С выхода активного полосового фильтра 3 сигнал поступает на первый вход усилителя с программируемым коэффициентом усиления 6, который нормирует измерительный сигнал для передачи в блок обработки информации в оптимальном динамическом диапазоне. С выхода усилителя 6 сигнал подается на первый вход двухканального аналого-цифрового преобразователя 14, а затем на первый вход микропроцессорного контроллера 15. Причем коэффициент усиления усилителя 6 задается автоматически микропроцессорным контроллером 15 через вход управления (2). При превышении или уменьшении сигнала заранее заданных границ, оптимальных для работы аналого-цифрового преобразователя 14, происходит, соответственно, уменьшение или увеличение коэффициента усиления с известным дискретным шагом. Микропроцессорный контроллер 15 производит цифровую фильтрацию в первой и второй информативных полосах частот звукового диапазона, а также вычисления дебита газа и жидкости в соответствии с заданным алгоритмом, и по окончании измерений полученные значения дебита газа и дебита жидкости становятся доступными для считывания через цифровой интерфейс 16.

Формирование информационного канала измерения расхода примесей воды производится следующим образом. Сигнал с выхода согласующего усилителя 2 поступает на второй активный полосовой фильтр 4, который выделяет третью информативную полосу в диапазоне ультразвуковых частот (десятки-сотни килогерц), интенсивность сигнала в которой связана с расходом примесей воды. Далее выделенный сигнал поступает на первый детектор 7, осуществляющий преобразование сигнала, а затем на интегратор 9 для его интегрирования. Полученное значение поступает на вход масштабирующего усилителя постоянного тока 11, выход которого подключен ко второму входу двухканального аналого-цифрового преобразователя 14, а затем на второй вход микропроцессорного контроллера 15, который после обработки в соответствии с заданным алгоритмом передает полученное значение расхода примесей воды на второй вход цифрового интерфейса 16, где оно становится доступными для считывания.

Формирование информационного канала измерения удельного содержания примесей песка производится следующим образом. Сигнал с предварительного широкополосного усилителя 2 поступает на третий активный полосовой фильтр 5, который выделяет и усиливает сигнал в четвертой информативной полосе частот ультразвукового диапазона (единицы мегагерц), интенсивность сигнала в которой связана с удельным содержанием примесей песка. Далее отфильтрованный и усиленный сигнал поступает на второй детектор 8. Продетектированный сигнал поступает на компаратор уровня 10, порог срабатывания которого настроен выше пиковых значений шумовых сигналов. При превышении на входе компаратора амплитуды полезного сигнала заданного порога компаратор срабатывает и запускает формирователь импульсов 13, представляющий собой логическую схему «И», на второй вход которого с генератора тактовых импульсов эталонной частоты 12 поступают импульсы прямоугольной формы заданных амплитуды, длительности и скважности. В результате на выходе формирователя 13 за время активного режима работы формируется последовательность импульсов. При снижении на входе компаратора 10 амплитуды сигнала ниже порогового уровня компаратор запрещает работу формирователя импульсов 13 и переводит его в режим ожидания. Средняя частота импульсов, полученных на выходе формирователя импульсов 13, подсчитывается на счетном входе (3) микропроцессорного контроллера 15 и после соответствующей обработки становится доступной для считывания через цифровой интерфейс 16.

Средняя частота импульсов на выходе формирователя пропорциональна интенсивности сигнала ударного воздействия песка.

Помимо этого, в устройстве предусмотрено измерение температуры контролируемого потока преобразователем температуры 17, выход которого подключен ко входу аналого-цифрового преобразователя 18, и измерение избыточного давления потока продукции в трубопроводе на устье скважины датчиком 20 с цифровым выходом. Полученные значения температуры и давления передаются на четвертый и пятый входы микропроцессорного контроллера 15, соответственно.

Алгоритм работы микропроцессорного контроллера 15 приведен на фиг. 2. Он содержит следующие основные операторы:

1 - пуск;

2 - подпрограмма самотестирования;

3 - подпрограмма инициализации ресурсов системы;

4 - ввод количества циклов измерения М;

5 - обнуление накопителей каналов дебита газа, дебита жидкости, расхода примесей воды и удельного содержания примесей песка;

6 - инициализация коэффициента усиления К масштабирующего усилителя;

7 - чтение из АЦП мгновенного значения сигнала Xi в информативной полосе частот;

8 - накопление суммы (Xi)2;

9 - подпрограмма расчета оптимального К с учетом среднего уровня сигнала, поступающего на первый вход с выхода двухканального аналого-цифрового преобразователя;

10 - вывод К на выход микропроцессорного контроллера;

11 - проверка окончания последнего цикла измерения;

12 - сброс накопителя импульсов;

13 - увеличение на единицу накопителя импульсов;

14 - проверка окончания последнего цикла измерения;

15 - чтение из АЦП мгновенного значения температуры;

16 - чтение с выхода цифрового датчика давления мгновенного значения давления;

17 - вычисление значений Gj;

18 - вычисление дебита газа, дебита жидкости, расхода примесей воды и удельного содержания примесей песка с учетом давления и температуры по формулам (1), (2), (3) и (4), соответственно;

19 - вывод Qг, Qж, Qв и Sn на интерфейс для считывания;

20 - конец.

Похожие патенты RU2654099C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Ланчаков Г.А.
  • Кучеров Г.Г.
  • Пономарев А.Н.
  • Кульков А.Н.
  • Карташов В.Ю.
  • Гавшин М.А.
  • Андреев Е.Б.
RU2148711C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Ремизов В.В.
  • Битюков В.С.
  • Пономарев В.А.
  • Сулейманов Р.С.
  • Ланчаков Г.А.
RU2154162C2
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Сулейманов Р.С.
  • Ланчаков Г.А.
  • Кучеров Г.Г.
RU2151287C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Карташов В.Ю.
  • Гавшин М.А.
  • Кузнецов Ю.В.
  • Пономарев А.Н.
  • Кульков А.Н.
  • Маринин В.И.
  • Маловичко Л.П.
RU2151286C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Битюков В.С.
  • Ланчаков Г.А.
  • Пономарев А.Н.
  • Карташов В.Ю.
  • Гавшин М.А.
RU2148168C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Кузнецов Ю.В.
  • Карташов В.Ю.
  • Андреев Е.Б.
  • Храбров И.Ю.
  • Малкин З.М.
  • Маловичко Л.П.
  • Пристанский А.Г.
RU2151288C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА ГАЗА И КОЛИЧЕСТВА ПРИМЕСЕЙ В ПРОДУКЦИИ ГАЗОВЫХ СКВАЖИН 2003
  • Браго Е.Н.
  • Ермолкин О.В.
  • Сулейманов Р.С.
  • Ланчаков Г.А.
  • Маринин В.И.
  • Битюков В.С.
  • Чистиков С.П.
RU2249690C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА ГАЗА И КОЛИЧЕСТВА ПРИМЕСЕЙ В ПРОДУКЦИИ ГАЗОВЫХ СКВАЖИН 2003
  • Браго Е.Н.
  • Ермолкин О.В.
  • Ланчаков Г.А.
  • Кульков А.Н.
  • Пономарев А.Н.
  • Шарапов В.Б.
  • Кузнецов Ю.В.
  • Великанов Д.Н.
  • Гавшин М.А.
RU2249691C1
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА РАСХОДА ФАЗ ГАЗОЖИДКОСТНОГО ПОТОКА 2009
  • Браго Евгений Николаевич
  • Великанов Дмитрий Николаевич
  • Южанин Виктор Владимирович
RU2387829C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ДЕБИТА ГАЗОВЫХ, ГАЗОКОНДЕНСАТНЫХ И НЕФТЯНЫХ СКВАЖИН 1996
  • Браго Е.Н.
  • Ермолкин О.В.
  • Ланчаков Г.А.
  • Нитипин Л.Д.
  • Кульков А.Н.
  • Пономарев А.Н.
  • Мозолевский И.В.
  • Бруслов В.А.
  • Карташов В.Ю.
  • Гавшин М.А.
  • Толстунов А.К.
RU2103502C1

Иллюстрации к изобретению RU 2 654 099 C1

Реферат патента 2018 года УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН

Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано для контроля параметров потока продукции газовых, газоконденсатных и нефтяных скважин. Устройство содержит датчики давления и температуры контролируемого потока и пьезокерамический датчик пульсаций давления потока, подключенный к входу широкополосного согласующего усилителя. Выходы широкополосного согласующего усилителя подключены к входам первого, второго и третьего активных полосовых фильтров. Выход первого активного полосового фильтра подключен к первому входу усилителя с программируемым коэффициентом усиления. Выход второго подключен к входу первого детектора, а выход третьего - к входу второго детектора. Выход усилителя с программируемым коэффициентом усиления подключен к первому входу двухканального аналого-цифрового преобразователя. Выход первого детектора подключен через последовательно соединенные интегратор и масштабирующий усилитель ко второму входу двухканального аналого-цифрового преобразователя. Выход второго детектора подключен через компаратор уровня к первому входу формирователя импульсов, ко второму входу которого подключен генератор тактовых импульсов эталонной частоты. Выходы двухканального аналого-цифрового преобразователя, масштабирующего усилителя, формирователя импульсов и датчиков давления и температуры контролируемого потока подключены, соответственно, к первому, второму, третьему, четвертому и пятому информационным входам микропроцессорного контроллера, указанные выходы которого подключены к входам цифрового интерфейса, а его управляющий выход подключен ко второму входу усилителя с программируемым коэффициентом усиления. Достигаемый технический результат заключается в обеспечении получения дополнительно к информации о количестве соударений частиц примесей песка и примесей воды в единицу времени, определяемой по превышению сигнала ударного воздействия заранее установленного порогового значения, информации о параметрах ударного воздействия, определяемых массой и скоростью частиц примесей, за счет формирования сигналов, пропорциональных интенсивности ударного воздействия. 2 ил.

Формула изобретения RU 2 654 099 C1

Устройство для контроля расхода компонентов продукции скважин, характеризующееся тем, что оно содержит датчики давления и температуры контролируемого потока и пьезокерамический датчик пульсаций давления потока, подключенный к входу широкополосного согласующего усилителя, выходы которого подключены к входам первого, второго и третьего активных полосовых фильтров, причем выход первого активного полосового фильтра подключен к первому входу усилителя с программируемым коэффициентом усиления, выход второго подключен к входу первого детектора, а выход третьего - к входу второго детектора, выход усилителя с программируемым коэффициентом усиления подключен к первому входу двухканального аналого-цифрового преобразователя, выход первого детектора подключен через последовательно соединенные интегратор и масштабирующий усилитель ко второму входу двухканального аналого-цифрового преобразователя, а выход второго детектора подключен через компаратор уровня к первому входу формирователя импульсов, ко второму входу которого подключен генератор тактовых импульсов эталонной частоты, выходы двухканального аналого-цифрового преобразователя, масштабирующего усилителя, формирователя импульсов и датчиков давления и температуры контролируемого потока подключены, соответственно, к первому, второму, третьему, четвертому и пятому информационным входам микропроцессорного контроллера, выходы которого подключены к входам цифрового интерфейса, а его управляющий выход подключен ко второму входу усилителя с программируемым коэффициентом усиления.

Документы, цитированные в отчете о поиске Патент 2018 года RU2654099C1

УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Кузнецов Ю.В.
  • Карташов В.Ю.
  • Андреев Е.Б.
  • Храбров И.Ю.
  • Малкин З.М.
  • Маловичко Л.П.
  • Пристанский А.Г.
RU2151288C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА И ПЛОТНОСТИ ЖИДКОСТИ 1990
  • Зайцев В.В.
SU1805737A1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАСХОДА КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1998
  • Браго Е.Н.
  • Ермолкин О.В.
  • Сулейманов Р.С.
  • Ланчаков Г.А.
  • Кучеров Г.Г.
RU2151287C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ДЕБИТОВ КОМПОНЕНТОВ ПРОДУКЦИИ СКВАЖИН 1996
  • Браго Е.Н.
  • Ермолкин О.В.
  • Битюков В.С.
  • Сулейманов Р.С.
  • Ланчаков Г.А.
  • Кучеров Г.Г.
  • Кульков А.Н.
  • Пономарев А.Н.
  • Карташов В.Ю.
  • Гавшин М.А.
  • Храбров И.Ю.
RU2103503C1
СПОСОБ ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ГАЗОЖИДКОСТНОГО ПОТОКА, ПРОХОДЯЩЕГО ПО ТРУБОПРОВОДУ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Рафиков Л.Г.
  • Маргулов А.Р.
  • Шовкун М.З.
  • Шубладзе А.М.
  • Беляев М.М.
  • Булушев В.С.
  • Викторов В.В.
  • Иванов А.В.
  • Лункин Б.В.
RU2008617C1
US 3834227 A1, 10.09.1974.

RU 2 654 099 C1

Авторы

Ермолкин Олег Викторович

Великанов Дмитрий Николаевич

Попова Янина Дмитриевна

Гавшин Михаил Александрович

Храбров Игорь Юрьевич

Лотош Алексей Николаевич

Шитиков Алексей Евгеньевич

Мартынов Дмитрий Валерьевич

Горохов Анатолий Владимирович

Даты

2018-05-16Публикация

2017-06-21Подача