Коаксиально-волноводный переход Российский патент 2018 года по МПК H01P5/103 

Описание патента на изобретение RU2655747C1

Область техники, к которой относится изобретение

Предлагаемое изобретение относится к технике сверхвысоких частот и может быть использовано в качестве согласованного перехода между коаксиальной линией и регулярным волноводом.

Уровень техники

Известен коаксиально-волноводный переход длиной L уголкового типа, описанный, например, в патенте РФ №2325017, Н01Р 5/103 от 24.04.2006 г., содержащий короткозамкнутый отрезок прямоугольного волновода с металлическим ребром Т-образной формы, соединенный с коаксиальной линией посредством индуктивного штыря. Индуктивный штырь расположен под углом 90° в центре широкой стенки волновода на расстоянии 0,8677Z от короткозамкнутого конца волновода. Техническим результатом является обеспечение коэффициента стоячей волны не хуже 1,2 в частотном диапазоне 2,44…2,46 ГГц.

Технические проблемы: узкий диапазон рабочих частот и большие фазовые искажения, вносимые переходом в полосе частот.

Наиболее близким к предлагаемому изобретению по технической сущности является коаксиально-волноводный переход, представленный в Авторском свидетельстве СССР, №1133631, Н01Р 5/103 от 16.12.1982 г. Устройство содержит отрезок прямоугольного волновода, закороченный торцевой стенкой, и отрезок коаксиальной линии, подключенный к отрезку прямоугольного волновода через середину его широкой стенки с помощью возбуждающего элемента, состоящего из металлического штыря, являющегося продолжением центрального проводника отрезка коаксиальной линии, и диэлектрической втулки, окружающей металлический штырь с установленной на ней диэлектрической гайкой с возможностью перемещения вдоль нее.

Устройство работает следующим образом. СВЧ-сигнал, поступающий на вход коаксиальной линии, возбуждает СВЧ-ток в металлическом штыре, что обеспечивает возбуждение отрезка прямоугольного волновода на волне Н10. Процесс настройки коаксиально-волноводного перехода заключается в выборе положения диэлектрической гайки на диэлектрической втулке по минимуму КСВ. С уменьшением КСВ в рабочей полосе частот уменьшаются и фазовые искажения.

Технические проблемы: относительно узкая ширина рабочей полосы частот и большие фазовые искажения, вносимые переходом в полосе частот.

Раскрытие изобретения

Цель предлагаемого изобретения - расширение рабочей полосы частот и уменьшение фазовых искажений.

Техническое решение

В коаксиально-волноводном переходе, содержащем отрезок прямоугольного волновода, закороченный торцевой стенкой, и отрезок коаксиальной линии, подключенный к отрезку прямоугольного волновода через середину его широкой стенки с помощью возбуждающего элемента, состоящего из металлического штыря, являющегося продолжением центрального проводника отрезка коаксиальной линии, и диэлектрической втулки, окружающей металлический штырь, введена диэлектрическая гайка, установленная на диэлектрической втулке с возможностью перемещения вдоль нее, причем наружный диаметр диэлектрической гайки равен λв/5, наружный диаметр диэлектрической втулки равен λв/10, а толщина диэлектрической гайки равна λв/20, где λв - длина волны в прямоугольном волноводе.

Описание чертежа

На чертеже показан коаксиально-волноводный переход.

Осуществление изобретения

Устройство содержит отрезок 1 прямоугольного волновода, закороченный торцевой стенкой 2, и отрезок 3 коаксиальной линии, подключенный к отрезку 1 прямоугольного волновода через середину его широкой стенки 4 с помощью возбуждающего элемента, состоящего из металлического штыря 5, являющегося продолжением центрального проводника 6 отрезка 3 коаксиальной линии и диэлектрической втулки 7, окружающей его. На диэлектрической втулке 7 установлена с возможностью перемещения вдоль нее диэлектрическая гайка 8, причем наружный диаметр диэлектрической гайки равен Λв/5, наружный диаметр диэлектрической втулки равен Λв/10, а толщина диэлектрической гайки равна Λв/20, где Λв - длина волны в прямоугольном волноводе.

Устройство работает следующим образом. СВЧ-сигнал, поступающий на вход отрезка 3 коаксиальной линии, возбуждает СВЧ-ток в металлическом штыре 5, что обеспечивает возбуждение отрезка 1 прямоугольного волновода на волне Н10.

Процесс настройки коаксиально-волноводного перехода с целью расширение рабочей полосы частот и уменьшение фазовых искажений заключается в выборе положения диэлектрической гайки 8 на диэлектрической втулке 7 по минимуму КСВ. С уменьшением КСВ в рабочей полосе частот уменьшаются и фазовые искажения.

Как показали экспериментальные исследования: наружный диаметр диэлектрической гайки D1, наружный диаметр диэлектрической втулки D и толщина t диэлектрической гайки зависят от рабочей частоты коаксиально-волноводного перехода.

Минимальные КСВ в полосе рабочих частот 3,4…4,2 ГГц для коаксиально-волноводного перехода на прямоугольном волноводе сечением 58×25 [мм] были получены при D1=20 мм, D=10 мм, t=5 мм. КСВ не более 1,18. При этом длина волны Λв в прямоугольном волноводе при основном типе волны Н10, соответствующая центральной частоте ƒ0 диапазона, определится в виде (А.Л. Фельдштейн, Л.Р. Явич, В.П. Смирнов. Справочник по элементам волноводной техники. «Сов. радио», М., 1967 г., стр. 136, соотношение 3.54)

где λ0 - длина волны в свободном пространстве, соответствующая центральной частоте ƒ0 диапазона 3,4…4,2 ГГц; λКР - критическая длина волны для прямоугольного волновода при основном типе волны Н10.

Поскольку λКР=2а, где а - длина широкой стенки прямоугольного волновода; ƒН - нижняя частота рабочего диапазона частот; ƒB - верхняя частота рабочего диапазона частот, то, подставив соответствующие значения, получим Λв=107,4 мм.

Если пересчитать размеры диэлектрической гайки и диэлектрической втулки в длинах волн в прямоугольном волноводе на основном типе волны Н10, то получим:

Отклонения расчетных от экспериментальных данных в процентах:

где D1ЭКСП, DЭКСП, tЭКСП - экспериментально найденные размеры наружного диаметра диэлектрической гайки, наружного диаметра диэлектрической втулки и толщины диэлектрической гайки соответственно; D1РАСЧ, DРАСЧ, tРАСЧ - расчетные размеры наружного диаметра диэлектрической гайки, наружного диаметра диэлектрической втулки и толщины диэлектрической гайки соответственно.

Как видно отклонения не превышают 7,2%, что позволяет использовать полученные выражения для определения геометрических размеров диэлектрической гайки и диэлектрической втулки при других сечениях прямоугольного волновода.

Коаксиально-волноводный переход на прямоугольном волноводе сечением 35×15 [мм] для диапазона рабочих частот 5,725…6,225 ГГц имеет при основном типе волны Н10, на центральной частоте ƒ0 рабочего диапазона частот длину волны в волноводе Λв=72,1 мм.

Соответственно

Коаксиально-волноводный переход на прямоугольном волноводе сечением 28,5×12,6 [мм] для диапазона рабочих частот 7,25…8,4 ГГц имеет при основном типе волны Н10, на центральной частоте ƒ0 рабочего диапазона частот длину волны в волноводе Λв=51,6 мм.

Соответственно

В результате экспериментальной проверки изготовленных коаксиально-волноводных переходов на рассматриваемые сечения по найденным размерам диэлектрической гайки и диэлектрической втулки были получены следующие максимальные КСВ в соответствующих полосах рабочих частот:

- коаксиально-волноводный переход на прямоугольном волноводе сечением 35×15 [мм] в диапазоне рабочих частот 5,725…6,225 ГГц имеет КСВ менее 1,15;

- коаксиально-волноводный переход на прямоугольном волноводе сечением 28,5×12,6 [мм] в диапазоне рабочих частот 7,25…8,4 ГГц имеет КСВ менее 1,18.

Диаметр металлического штыря во всех рассматриваемых коаксиально-волноводных переходах около 2 мм, глубина погружения в волновод 13,8±3 мм.

Теоретическое решение задачи минимизации КСВ в полосе рабочих частот для коаксиально-волноводных переходов при наличии нескольких изменяющихся геометрических параметров в настоящее время неизвестно.

Похожие патенты RU2655747C1

название год авторы номер документа
Коаксиально-волноводный переход 2018
  • Слугин Валерий Георгиевич
  • Шевцов Олег Юрьевич
  • Артющев Алексей Владимирович
  • Казаков Денис Сергеевич
  • Юдаев Андрей Анатольевич
RU2690197C1
ШИРОКОПОЛОСНОЕ ВОЛНОВОДНОЕ ЩЕЛЕВОЕ ДВУХКАНАЛЬНОЕ ИЗЛУЧАЮЩЕЕ УСТРОЙСТВО КРУГОВОЙ ПОЛЯРИЗАЦИИ 2009
  • Демокидов Борис Константинович
  • Стоянов Михаил Сергеевич
  • Долженков Алексей Андреевич
RU2386199C1
ВОЛНОВОДНЫЙ ИЗЛУЧАТЕЛЬ 2003
  • Митин В.А.
  • Позднякова Р.Д.
  • Ястребов Б.П.
RU2234174C1
МИНИАТЮРНЫЙ КОАКСИАЛЬНО-ВОЛНОВОДНЫЙ ПЕРЕХОД 2011
  • Майоров Александр Петрович
  • Рудаков Вячеслав Андреевич
  • Следков Виктор Александрович
RU2464676C1
СООСНЫЙ КОАКСИАЛЬНО-ВОЛНОВОДНЫЙ ПЕРЕХОД ВЫСОКОГО УРОВНЯ МОЩНОСТИ 2018
  • Комаров Вячеслав Вячеславович
  • Мещанов Валерий Петрович
  • Попова Наталия Федоровна
RU2678924C1
ВОЛНОВОДНОЕ ОКНО ВВОДА И/ИЛИ ВЫВОДА ЭНЕРГИИ СВЧ 2014
  • Зотова Валентина Васильевна
  • Косинов Александр Александрович
  • Мартыненко Максим Александрович
  • Прокофьев Борис Владимирович
RU2573662C1
КОАКСИАЛЬНО-ВОЛНОВОДНЫЙ ШИРОКОПОЛОСНЫЙ ПЕРЕХОД 2020
  • Ионов Вячеслав Ефимович
  • Иванов Кирилл Андреевич
  • Редька Алексей Владимирович
RU2735360C1
УЗКОПОЛОСНЫЙ КОАКСИАЛЬНО-ВОЛНОВОДНЫЙ ПЕРЕХОД УГОЛКОВОГО ТИПА 2006
  • Комаров Вячеслав Вячеславович
RU2325017C2
ШИРОКОПОЛОСНЫЙ ВОЛНОВОДНО-РУПОРНЫЙ ИЗЛУЧАТЕЛЬ 2003
  • Джиоев А.Л.
  • Тихов Ю.И.
  • Понкратов А.И.
RU2237954C1
Малогабаритный двухполяризационный волноводный излучатель фазированной антенной решетки с высокой развязкой между каналами 2017
  • Пономарев Леонид Иванович
  • Прилуцкий Андрей Алексеевич
  • Васин Антон Александрович
  • Добычина Елена Михайловна
  • Малахов Роман Юрьевич
  • Терехин Олег Васильевич
  • Харалгин Сергей Владимирович
RU2655033C1

Иллюстрации к изобретению RU 2 655 747 C1

Реферат патента 2018 года Коаксиально-волноводный переход

Изобретение относится к СВЧ радиотехнике. Коаксиально-волноводный переход содержит отрезок прямоугольного волновода, закороченный торцевой стенкой, и отрезок коаксиальной линии, подключенный к отрезку прямоугольного волновода через середину его широкой стенки с помощью возбуждающего элемента, состоящий из металлического штыря, являющегося продолжением центрального проводника отрезка коаксиальной линии, и диэлектрической втулки, окружающей металлический штырь. В переход введена диэлектрическая гайка, установленная на диэлектрической втулке с возможностью перемещения вдоль нее, причем наружный диаметр диэлектрической гайки равен Λв/5, наружный диаметр диэлектрической втулки равен Λв/10, а толщина диэлектрической гайки равна Λв/20, где Λв - длина волны в прямоугольном волноводе. Технический результат – расширение рабочей полосы и уменьшение фазовых искажений. 1 ил.

Формула изобретения RU 2 655 747 C1

Коаксиально-волноводный переход, содержащий отрезок прямоугольного волновода, закороченный торцевой стенкой, и отрезок коаксиальной линии, подключенный к отрезку прямоугольного волновода через середину его широкой стенки с помощью возбуждающего элемента, состоящий из металлического штыря, являющегося продолжением центрального проводника отрезка коаксиальной линии, и диэлектрической втулки, окружающей металлический штырь, отличающийся тем, что с целью расширения рабочей полосы частот и уменьшения фазовых искажений введена диэлектрическая гайка, установленная на диэлектрической втулке с возможностью перемещения вдоль нее, причем наружный диаметр диэлектрической гайки равен Λв/5, наружный диаметр диэлектрической втулки равен Λв/10, а толщина диэлектрической гайки равна Λв/20, где Λв - длина волны в прямоугольном волноводе.

Документы, цитированные в отчете о поиске Патент 2018 года RU2655747C1

Коаксиально-волноводный переход 1982
  • Яцевич Владимир Петрович
  • Лысенко Любовь Ивановна
  • Савв Ким Рашидович
  • Равчеев Юрий Федорович
SU1133631A1
Машина для сбора чая 1930
  • Садовский И.О.
SU24599A1
СПОСОБ ЗОНДИРОВАНИЯ КОНТРОЛИРУЕМОГО ПРОСТРАНСТВА РАДИОЛОКАЦИОННОЙ СИСТЕМОЙ С ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКОЙ 2009
  • Каптюг Алексей Александрович
  • Князев Александр Павлович
RU2408032C2
US 4349790 A1, 14.09.1982
US 4463324 A1, 31.07.1984
WO 1995026577 A1, 05.10.1995
СПОСОБ ЛАБОРАТОРНОГО КОНТРОЛЯ СРЕДНЕЙ ТОНИНЫ ВОЛОКОН В МАССЕ 2013
  • Костюков Анатолий Федорович
RU2527146C1
US 4533884 A1, 06.08.1985
US 4740764 A1, 26.04.1988.

RU 2 655 747 C1

Авторы

Ганзий Дмитрий Дмитриевич

Егоров Иван Петрович

Хромов Иван Валерьевич

Даты

2018-05-29Публикация

2017-07-21Подача