СПОСОБ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ Российский патент 2018 года по МПК G01B7/02 

Описание патента на изобретение RU2656016C1

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях.

Известны механический способ измерения длины протяженных металлических изделий и реализующее его устройство (SU 313070 А1, 31.08.1971). Согласно им контролируемое изделие перемещают протяжным устройством в осевом направлении. Синхронно с этим приводят во вращение роликовый датчик пути, отсчитывая длину изделия как превышение некоторой базовой величины, обозначенной стационарными датчиками. Недостатками этих способа и устройства являются контактность измерений, часто неприемлемая на практике; громоздкость оборудования (его двойная длина); невысокие точность измерения и быстродействие. Точность измерения снижена вследствие проскальзывания изделия относительно ролика.

Известно также техническое решение (SU 442361 А1, 05.09.1974), которое содержит описание способа измерения, по технической сущности наиболее близкого к предлагаемому способу, и принятое в качестве прототипа. Согласно этому способу-прототипу, контролируемую металлическую трубу располагают изолированно над заземленной металлической плоскостью. В совокупности проводников - трубы и данной плоскости возбуждают электромагнитные колебания как в отрезке длинной линии. Измеряя колебательные характеристики отрезка длинной линии, в частности, его резонансную частоту электромагнитных колебаний, судят о длине металлической трубы. Недостатком данного способа является его ограниченные функциональные возможности, вызванные невысокой точностью измерения вследствие возможных изменений электрофизических параметров среды на измерительном участке.

Техническим результатом изобретения является расширение функциональных возможностей способа измерения вследствие повышения точности измерения длины протяженного металлического изделия.

Технический результат достигается тем, что в предлагаемом способе измерения длины протяженного металлического изделия, при котором контролируемое металлическое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости возбуждают на фиксированной частоте электромагнитные волны ТЕМ-типа как в отрезке длинной линии и измеряют фазовый сдвиг возбуждаемой и отраженной от конца этого отрезка длинной линии электромагнитных волн, по которому судят о длине протяженного металлического изделия, определяют фазовую скорость электромагнитных волн на измерительном участке и путем изменения фиксированной частоты возбуждаемых в отрезке длинной линии электромагнитных волн поддерживают постоянной величину отношения этой частоты и фазовой скорости электромагнитных волн на измерительном участке.

Предлагаемый способ поясняется чертежом на фиг. 1.

На фиг. 1 схематично показана схема устройства для реализации способа измерения длины протяженного металлического изделия.

Устройство, реализующее способ, содержит: изделие 1, металлическую плоскость 2, генератор 3, линию связи 4, резонатор 5, фазовый детектор 6, направленные ответвители 7 и 8, регистратор 9.

Сущность предлагаемого способа состоит в следующем.

В способе-прототипе информативным параметром является резонансная частота электромагнитных колебаний отрезка длинной линии, соответствующая основному или какому-либо более высокому типу ТЕМ-колебаний (гармонике).

Согласно данному способу, для проведения измерений длины протяженного металлического изделия и рассмотрении совокупности двух протяженных проводников - контролируемой трубы и заземленной металлической плоскости - как отрезка длинной линии используют другой информативный параметр - фазовый сдвиг Δϕ падающей и отраженной от разомкнутого конца отрезка длинной линии электромагнитных волн.

При распространении электромагнитной волны вдоль отрезка длинной линии, ее отражении от разомкнутого конца отрезка длинной линии и приеме этой волны на его входе фазовый сдвиг Δϕ падающей и принимаемой электромагнитных волн выражается следующей формулой (Викторов В.А. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 73-74):

где ƒ - частота генератора, - фазовая скорость электромагнитной волны, с - скорость света, ε и μ - соответственно, относительное значение диэлектрической проницаемости и относительное значение магнитной проницаемости среды в пространстве, где расположены проводники рассматриваемого отрезка длинной линии, .

Как следует из соотношения (1), независимости измеряемого фазового сдвига Δϕ от фазовой скорости νф электромагнитных волн, зависящей, в свою очередь, от величин ε и μ и их возможных изменений, можно достичь, если обеспечить неизменность отношения ƒ/νф фиксированной частоты ƒ возбуждаемых электромагнитных волн и фазовой скорости νф электромагнитных волн, то есть коэффициента от величин ε и μ. Это означает, что обеспечить неизменность отношения ƒ/νф возможно, если тем или иным способом изменять частоту ƒ в зависимости от значений ε и μ:

Реально выполнить условие (2) можно следующим образом. В качестве генератора электромагнитных колебаний следует применять автогенератор, частотозадающим элементом которого является резонатор - колебательный контур, дополнительный отрезок длинной линии или объемный резонатор. При этом собственная (резонансная) частота ƒ такого резонатора определяет (задает) частоту электромагнитных колебаний генератора, которая зависит от ε и μ:

где ƒ0=k - собственная частота резонатора при ε=μ=1.

Тогда при любых значениях ε и μ будет иметь:

Это соотношение является инвариантом по отношению к ε и μ.

Следовательно, обеспечив физически зависимость частоты ƒ зондирующих электромагнитных волн от электрофизических параметров ε и μ окружающей среды указанным выше способом, можно достичь инвариантности результатов измерения длины изделия к электрофизическим параметрам ε и μ и их возможным изменениям, то есть обеспечить стабилизацию выходной характеристики измерительных устройств, реализующих данный способ измерения.

Согласно предлагаемому способу, в рассматриваемом отрезке длинной линии, разомкнутом на концах, возбуждают электромагнитные волны типа ТЕМ. Для образования данного отрезка длинной линии, разомкнутого на концах, контролируемую трубу 1 располагают на диэлектрических опорах (они не показаны) над металлической плоскостью 2 (фиг. 1). С применением высокочастотного генератора 3 фиксированной частоты и линии связи 4 (коаксиальный кабель) в таком отрезке длинной линии возбуждают электромагнитные волны. Генератором 3 электромагнитных колебаний служит автогенератор, частотозадающим элементом которого является резонатор 5 - колебательный контур, дополнительный отрезок длинной линии или объемный резонатор. При этом собственная (резонансная) частота ƒ такого резонатора определяет (задает) частоту электромагнитных колебаний генератора, зависящую от фазовой скорости νф электромагнитных волн на измерительном участке, то есть от ε и μ, и выражаемую формулой (3).

Отраженные от конца отрезка длинной линии волны, а также прямые волны (часть их мощности) подаются от генератора 3 на фазовый детектор 6. Для этой цели служат направленные ответвители 7 и 8, соответственно, для прямых и отраженных электромагнитных волн. На выходе фазового детектора 6, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение U которого пропорционально разности фаз Δϕ этих волн: U=acos(Δϕ+Δϕ0). Здесь Δϕ0 - фиксированный фазовый сдвиг в линии связи 4, направленных ответвителях 7 и 8. Коэффициент а учитывает затухание, вносимое схемными элементами. Выход фазового детектора 5 подсоединен к регистратору 9, выходной сигнал которого соответствует значению длины протяженного металлического изделия.

Для контролируемых изделий выбором фиксированной частоты генератора можно оптимизировать чувствительность такого датчика длины изделия в рабочем диапазоне ее изменения. При этом имеет место монотонность зависимости информативного параметра от этой длины. Данный способ измерения может найти применение на практике там, где требуется производить высокоточные бесконтактные измерения длины различных протяженных металлических изделий при наличии возможных изменений электрофизических параметров окружающей среды в области расположения измерительного участка, где производят измерения длины металлического изделия.

Похожие патенты RU2656016C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ 2017
  • Совлуков Александр Сергеевич
RU2656021C1
СПОСОБ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ 2021
  • Совлуков Александр Сергеевич
RU2775866C1
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2016
  • Совлуков Александр Сергеевич
RU2645836C1
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ 2021
  • Совлуков Александр Сергеевич
RU2767585C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ В ЕМКОСТИ 2022
  • Совлуков Александр Сергеевич
RU2776192C1
СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦ РАЗДЕЛА МЕЖДУ КОМПОНЕНТАМИ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ В ЕМКОСТИ 2016
  • Совлуков Александр Сергеевич
RU2647186C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА 2013
  • Совлуков Александр Сергеевич
RU2521722C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ 2017
  • Совлуков Александр Сергеевич
RU2661349C1
СПОСОБ ИЗМЕРЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ 2022
  • Совлуков Александр Сергеевич
RU2787070C1
СПОСОБ ИЗМЕРЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ 2021
  • Совлуков Александр Сергеевич
RU2765897C1

Иллюстрации к изобретению RU 2 656 016 C1

Реферат патента 2018 года СПОСОБ ИЗМЕРЕНИЯ ДЛИНЫ ПРОТЯЖЕННОГО МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных возможностей и повышение точности измерений. Способ измерения длины протяженного металлического изделия включает следующие этапы: контролируемое металлическое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости - возбуждают на фиксированной частоте электромагнитные волны ТЕМ-типа как в отрезке длинной линии и измеряют фазовый сдвиг возбуждаемой и отраженной от конца этого отрезка длинной линии электромагнитных волн. По этому фазовому сдвигу судят о длине протяженного металлического изделия и определяют фазовую скорость электромагнитных волн на измерительном участке. Путем изменения фиксированной частоты возбуждаемых в отрезке длинной линии электромагнитных волн поддерживают постоянной величину отношения этой частоты и фазовой скорости электромагнитных волн на измерительном участке. 1 ил.

Формула изобретения RU 2 656 016 C1

Способ измерения длины протяженного металлического изделия, в котором контролируемое металлическое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости возбуждают на фиксированной частоте электромагнитные волны ТЕМ-типа как в отрезке длинной линии и измеряют фазовый сдвиг возбуждаемой и отраженной от конца этого отрезка длинной линии электромагнитных волн, по которому судят о длине протяженного металлического изделия, отличающийся тем, что определяют фазовую скорость электромагнитных волн на измерительном участке и путем изменения фиксированной частоты возбуждаемых в отрезке длинной линии электромагнитных волн поддерживают постоянной величину отношения этой частоты и фазовой скорости электромагнитных волн на измерительном участке.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656016C1

Способ измерения длины протяжных изделий 1972
  • Бушель Альберт Рафаилович
  • Викторов Владимир Андреевич
  • Крюков Георгий Яковлевич
  • Малинка Анатолий Васильевич
  • Туляков Анатолий Михайлович
SU442361A1
Устройство для измерения длины проката 1981
  • Пузиков Николай Иванович
  • Ольштейн Ефим Ицкович
  • Буров Владимир Николаевич
  • Дьяченко Леонид Пантелеевич
  • Садыков Владимир Николаевич
SU1016665A1
Устройство для измерения длины протяженных изделий 1981
  • Бердянский Марк Григорьевич
  • Бушель Альберт Рафаилович
  • Позин Яков Моисеевич
  • Толстиков Рэм Михайлович
  • Араптанов Геннадий Васильевич
  • Казекин Владимир Николаевич
SU962764A1
УСТРОЙСТВО для ИЗМЕРЕНИЯ ДЛИНЫ ПРОКАТА 0
SU313070A1
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ОТКЛОНЕНИЙ ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ ВНУТРЕННИХ РАЗМЕРОВ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Носков Владислав Яковлевич
RU2579644C2
US 9144862 B2, 29.09.2015.

RU 2 656 016 C1

Авторы

Совлуков Александр Сергеевич

Даты

2018-05-30Публикация

2017-08-18Подача