СПОСОБ ОЦЕНКИ РАДОНООПАСНОСТИ УЧАСТКОВ ЗАСТРОЙКИ Российский патент 2018 года по МПК G01T1/167 

Описание патента на изобретение RU2656131C1

Изобретение относится к измерению интенсивности альфа-излучения радона с поверхности грунтов и может быть использовано для оценки радоноопасности территорий застройки.

В настоящее время при производстве инженерных изысканий проводят радиационно-экологические исследования, составной частью которых является оценка радоноопасности участков застройки. Результат такой оценки позволяет решить вопрос о необходимости использования противорадоновой защиты фундамента здания на стадии строительства. При отсутствии радоновых рисков уменьшаются затраты на строительство, а в дальнейшем не нужны дорогостоящие обследования помещений внутри зданий.

Известен способ оценки радоноопасности участков застройки [Neznal М., Neznal М., The new method for Assessing the Radon Risk of Building Sites, Czech Geological Survey Special Papers, 2004, V. 16 http://www.radon-vos.cz/pdf/metodika.pdf], заключающийся в следующем: стальной полый стержень вбивают на глубину 0.8 метров, стержень соединяют со шприцом с помощью специальной трубки, в течение 2-3 секунд с помощью шприца отбирают пробы почвенного воздуха. Пробы воздуха переводят в устройство RM-2 для измерения объемной активности радона. Стальные полые стержни соединяют с помощью трубки с прибором RADON JOK, открывают заглушку, сжимают зонд руками, выкачивая воздух из зонда прибора RADON JOK, далее заглушку закрывают и измеряют время поступления почвенного воздуха в зонд до момента выравнивания давления в течение одной-двух минут. Далее по формуле рассчитывают газопроницаемость грунта:

,

где k - газопроницаемость грунта, м2;

Q - объем воздуха, проходящего через зонд за секунду определяется отношением объема зонда ко времени выравнивания давлений; м3/с,

F - коэффициент формы зонда, м;

Δр - разность давлений на поверхности почвы и в активной области зонда, Па;

μ - динамическая вязкость почвенного газа, Па⋅с.

На основе результатов измерений объемной активности радона OA и газопроницаемости грунтов k на глубине 0.8 м рассчитывают радоновый потенциал RP формуле

,

где OAmin - минимальное значение поровой активности, которое принимают равным 1 кБк⋅м-3;

OA3 - третий квартиль набора данных поровой активности радона;

k3 - третий квартиль набора данных газопроницаемости грунтов.

По рассчитанному значению радонового потенциала с помощью классификационной таблицы определяют категорию радонового индекса - низкий, средний или высокий уровень радоноопасности.

Способ дает недостоверные оценки радоноопасности участков застройки, так как значения измеряемых величин определяются физическими свойствами грунтов на глубине 0.8 м, в то время как основание фундамента располагается на глубинах от полутора до нескольких метров; кроме того малые времена экспозиции приводят к большой статистической погрешности измерений.

Известен способ оценки радоноопасности участков застройки [Modeling of geogenic radon in Switzerland based on ordered logistic regression. Georg Kropat. Francois Bochud. Christophe Murith. Martha Palacios Gruson Baechler. Journal of Environmental Radioactivity, 2016, V. 166 (2) - P. 1-6], включающий измерение дозы гамма-излучения на высоте 1 м от поверхности земли, измерение газопроницаемости почв на глубинах от 0.8 м до 1 м с помощью измерительного прибора RADON JOK, изучение геологической структуры покровных пород на основе региональных геологических баз данных для выявления геологически однородных единиц и определения плотности линий разлома, обработку с помощью логистической регрессии данных по типам геологически однородных единиц, дозам гамма-излучения, газопроницаемости почв и плотности линий разлома для предсказания вероятности радонового риска.

Оценка радоноопасности участков застройки этим способом недостоверна, так как газопроницаемость измеряют на глубине от 0.8 м до 1 м, что меньше глубины залегания фундамента; доза, измеренная на высоте 1 м от поверхности земли, не коррелирует с количеством радона, выделяющего с поверхности основания фундамента; использование региональных баз данных приводит к ошибкам классификации при проведении оценок радоноопасности участков застройки.

Известен способ оценки радоноопасности участков застройки [Руководство по эксплуатации измерительного комплекса «АЛЬФАРАД ПЛЮС», Москва, 2014 г.], взятый за прототип, при котором сначала зачищают участок от мусора, растительности и крупных камней. Затем верхний слой почвы рыхлят и выравнивают поверхность, снимают почвенный слой толщиной от 3 см до 5 см. На подготовленном участке устанавливают накопительную камеру, плотно прижимая ее к поверхности. Накопительную камеру оставляют на 15 мин, чтобы в ней накопился радон. Затем накопительную камеру соединяют с автономной воздуходувкой через трубки для перевода накопленного в камере воздуха в измерительное устройство прибора «АЛЬФАРАД ПЛЮС». Перевод воздуха в камеру осуществляют в течение 5 мин. В течение 20 мин проводят измерение плотности потока радона, после чего на экран дисплея выводится результат. Территория является радоноопасной, если измеренное значение плотности потока радона больше 80 мБк м-2 с-1, при меньшем значении территория радиационно безопасна [Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ - 99), СП 2.6.1.799-99, Минздрав РФ, 2000].

Измеренная таким образом на земной поверхности плотность потока радона не является достоверной для грунтов, расположенных на дне котлована, вырытого под фундамент здания на глубинах от одного до нескольких метров. Кроме того, из-за малых времен экспозиции измеренная с помощью измерительных комплексов «АЛЬФАРАД ПЛЮС» плотность потока радона характеризуется высокой вариабельностью результатов (от 40% до 100%). При нормировании критического значения плотности потока радона (80 мБк м-2 с-1) высокая вариабельность результатов измерения затрудняет объективно оценить радоноопасность территории.

Техническая проблема, решаемая при использовании предложенного изобретения, заключается в создании способа оценки радоноопасности участков застройки, позволяющего достоверно оценить количество радона, которое может поступить в здание из грунтов, расположенных в основании фундамента на глубинах от одного до нескольких метров.

Предложенный способ оценки радоноопасности участков застройки, так же как в прототипе, включает выбор контрольных точек на исследуемой поверхности грунта, зачистку от мусора и камней в этих точках, рыхление и удаление верхнего слоя грунта толщиной 3-5 см, выравнивание его поверхности, установку в каждой точке накопительной камеры для накопления радона, определение плотности потока радона, и если среднее значение плотности потока радона превышает 80 мБк⋅м-2⋅с-1, то территорию считают радоноопасной, а если меньше 80 мБк⋅м-2⋅с-1, то территория радиационно безопасна.

Согласно изобретению контрольные точки выбирают на расстоянии 10 м друг от друга на поверхности грунта на дне котлована, вырытого под фундамент строящегося здания, используют накопительные камеры с угольными адсорберами для накопления радона в течение 1 часа и по бета-излучению короткоживущих дочерних продуктов распада радона 214Pb и 214Bi определяют плотность потока радона.

Количество радона, выходящего на поверхность грунтов, существенно зависит от их физических свойств, главным образом от содержания радия в грунтах, пористости, влажности и плотности грунтов. В частности, количество радона, содержащееся в порах грунта и диффундирующее к поверхности, определяется коэффициентом эманирования, который значительным образом зависит от влажности грунта. От влажности и пористости грунта зависит коэффициент диффузии радона в почвогрунтах, определяющий скорость выхода радона на поверхность, то есть плотность потока радона. Содержание радия в грунтах на глубинах до нескольких десятков метров изменяется незначительно в отличие от пористости, влажности и плотности, которые в приповерхностных слоях грунта в зависимости от глубины меняются существенным образом. Необходимо отметить, что за счет радиоактивного распада радон выходит на поверхность грунта с глубин не более трех метров, что соответствует глубинам залегания оснований фундаментов. В соответствии с этим плотность потока радона, измеренная на земной поверхности, отличается от плотности потока радона, измеренной в основании фундамента на глубинах от одного до нескольких метров.

Для иллюстрации изменения физических свойств грунтов по глубине на экспериментальной площадке г. Томска с помощью ручного бура были отобраны 18 проб на глубинах 0.2 м …1.9 м с шагом 0.1 м. Для определения плотности, пористости и влажности грунта был использован метод «режущего кольца»: режущее кольцо с внутренним объемом 53.2 см3 вдавливали в отобранные пробы, не допуская перекосов. После заполнения кольца грунт подрезали вровень с краями и выталкивали на подложку. Затем грунт высушивали, определяли плотность сухого грунта ρd, пористость η и влажность грунта ω. Результаты измерения плотности, пористости и влажности грунта представленные на фиг. 1-3 показывают, что физические свойства грунтов на сравнительно небольших глубинах (примерно до 0,6 м) меняются достаточно сильно. Как следствие, плотность потока радона, измеренная на земной поверхности, не будет соответствовать значениям ППР в основании фундамента, глубина которого обычно более одного метра.

Таким образом, технический результат предложенного способа заключается в получении достоверной оценки радоноопасности участка застройки в результате измерения плотности потока радона на дне котлована, вырытого под фундамент здания, и уменьшения статистического разброса результатов измерения за счет увеличения времени экспозиции от одного часа и более.

На фиг. 1 приведены результаты измерения пористости грунта η на разных глубинах.

На фиг. 2 приведены результаты измерения плотности сухого грунта ρd на разных глубинах.

На фиг. 3 приведены результаты влажности грунта ω на разных глубинах.

На фиг. 4 представлена схема точек измерения на участке застройки.

В таблице 1 представлены результаты измерения плотности потока радона (ППР) в каждой точке.

Предложенным способом была проведена оценка радоноопасности участка застройки на строительной площадке г. Томска в районе «Зеленые горки». Измерения проводили в летний период (июль - август) 2014 г.

Исследуемая площадка размерами 20 м ×30 м располагалась на дне котлована глубиной 1,5 м. На площадке было выбрано 12 контрольных точек на расстоянии 10 м друг от друга (фиг. 4). В контрольных точках провели зачистку от камней и мусора, рыхлили и снимали верхний слой грунта толщиной от 3 см до 5 см, тщательно выравнивая поверхность.

В качестве пробоотборников использовали накопительные камеры измерительного комплекса «Камера-01», содержащие внутри слой угля, предварительно прогретого в регенераторе при температуре 150°С в течение одного часа. Подготовленные в соответствии с инструкцией к измерительному комплексу «Камера-01» накопительные камеры устанавливали на исследуемый участок в каждую контрольную точку на 1 час. По истечению времени экспозиции в лабораторных условиях из каждой накопительной камеры уголь пересыпали в блок детектирования бета-излучения короткоживущих дочерних продуктов распада радона - 214Pb и 214Bi. Измерение проводили в течение 1 часа, после чего на дисплее прибора высвечивалось значение плотности потока радона.

В каждой контрольной точке было проведено по три измерения плотности потока радона в течение одного дня; в качестве результатов измерения использовали средние значения.

В таблице 1 приведены результаты измерения плотности потока радона и средние значения плотности потока радона в каждой точке. Для участка застройки рассчитаны среднее значение плотности потока радона 37,25 мБк⋅м-2 с-1, стандартное отклонение - 7 мБк⋅м-2 с-1 и коэффициент вариации - 19%. Необходимо отметить, что полученный коэффициент вариации плотности потока радона (ППР) меньше разброса значений плотности потока радона, измеряемой с помощью способа-прототипа (не менее 40%).

По данным измерения плотности потока радона видно, что исследуемый участок является радиационно безопасным.

Похожие патенты RU2656131C1

название год авторы номер документа
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА 2015
  • Яковлева Валентина Станиславовна
  • Кондратьева Алла Георгиевна
  • Черепнев Максим Святославович
RU2616224C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ АДВЕКЦИИ ПОЧВЕННЫХ ГАЗОВ 2011
  • Яковлева Валентина Станиславовна
RU2470328C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ДОЖДЕВЫХ ОСАДКОВ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ 2016
  • Яковлева Валентина Станиславовна
  • Нагорский Петр Михайлович
  • Кондратьева Алла Георгиевна
  • Черепнев Максим Святославович
  • Яковлев Григорий Алексеевич
RU2656118C1
ВЕНТИЛИРУЕМЫЙ СТРОИТЕЛЬНЫЙ БЛОК И СИСТЕМА ПРОТИВОРАДОНОВОЙ ЗАЩИТЫ ЗДАНИЯ С ИСПОЛЬЗОВАНИЕМ ЭТИХ БЛОКОВ 2005
  • Король Елена Анатольевна
  • Макаров Герман Вадимович
  • Слесарев Михаил Юрьевич
  • Теличенко Валерий Иванович
RU2304203C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ И КОЛИЧЕСТВА ДОЖДЕВЫХ ОСАДКОВ 2018
  • Яковлев Григорий Алексеевич
  • Яковлева Валентина Станиславовна
  • Нагорский Петр Михайлович
  • Беляева Ирина Владимировна
RU2689839C1
СПОСОБ ИЗМЕРЕНИЯ ПЛОТНОСТИ ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА ПО БЕТА- И ГАММА-ИЗЛУЧЕНИЮ 2010
  • Яковлева Валентина Станиславовна
  • Вуколов Артем Владимирович
RU2428715C1
СПОСОБ ИЗМЕРЕНИЯ ПЛОТНОСТИ ПОТОКА РАДОНА И ТОРОНА С ПОВЕРХНОСТИ ГРУНТА ПО АЛЬФА-ИЗЛУЧЕНИЮ 2010
  • Яковлева Валентина Станиславовна
  • Вуколов Артем Владимирович
RU2419817C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ПОТОКА РАДОНА С ПОВЕРХНОСТИ ЗЕМЛИ 2002
  • Рыжакова Н.К.
  • Яковлева В.С.
RU2212688C1
СПОСОБ ОЦЕНКИ ШИРИНЫ ЗОНЫ ДИНАМИЧЕСКОГО ВЛИЯНИЯ АКТИВНОГО РАЗЛОМА ЗЕМНОЙ КОРЫ 2012
  • Семинский Константин Жанович
  • Бобров Александр Анатольевич
RU2516593C1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ КОНВЕКЦИИ ПОЧВЕННЫХ ГАЗОВ 2003
  • Яковлева В.С.
  • Рыжакова Н.К.
RU2239206C1

Иллюстрации к изобретению RU 2 656 131 C1

Реферат патента 2018 года СПОСОБ ОЦЕНКИ РАДОНООПАСНОСТИ УЧАСТКОВ ЗАСТРОЙКИ

Изобретение относится к измерению интенсивности альфа-излучения радона с поверхности грунтов и может быть использовано для оценки радоноопасности территорий застройки. Способ оценки радоноопасности участков застройки заключается в том, что в основании фундамента строящегося здания на дне котлована выбирают контрольные точки, расположенные на расстоянии 10 м друг от друга. В контрольных точках рыхлят и снимают верхний слой толщиной от 3 см до 5 см, тщательно выравнивая поверхность. Устанавливают в каждой точке накопительную камеру с угольными адсорберами для накопления радона в течение 1 часа и по бета-излучению короткоживущих дочерних продуктов распада радона 214Рb и 214Bi определяют плотность потока радона. Если среднее значение плотности потока радона превышает 80 мБк⋅м-2⋅с-1, то территорию считают радоноопасной, а если меньше 80 мБк⋅м-2⋅с-1, то территория радиационно безопасна. Технический результат – уменьшение статистического разброса результатов измерения, что улучшает достоверность оценки. 4 ил., 1 табл.

Формула изобретения RU 2 656 131 C1

Способ оценки радоноопасности участков застройки, включающий выбор контрольных точек на исследуемой поверхности грунта, зачистку от мусора и камней в этих точках, рыхление и удаление верхнего слоя грунта толщиной 3-5 см, выравнивание его поверхности, установку в каждой точке накопительной камеры для накопления радона, определение плотности потока радона, и если среднее значение плотности потока радона превышает 80 мБк⋅м-2⋅с-1, то территорию считают радоноопасной, а если меньше 80 мБк⋅м-2⋅с-1, то территория радиационно безопасна, отличающийся тем, что контрольные точки на расстоянии 10 м друг от друга выбирают на поверхности грунта на дне котлована, вырытого под фундамент строящегося здания, используют накопительные камеры с угольными адсорберами для накопления радона в течение 1 часа и по бета-излучению короткоживущих дочерних продуктов распада радона 214Pb и 214Bi определяют плотность потока радона.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656131C1

Руководство по эксплуатации измерительного комплекса "АЛЬФАРАД ПЛЮС", Москва, 2014 г
Весы с приспособлением для отрезания отпускаемого товара 1927
  • Крупенников В.В.
SU9257A1
RU 2011121256 A, 27.11.2012
DE 4310096 A1, 29.09.1994
US 4975575 A1, 04.12.1990.

RU 2 656 131 C1

Авторы

Рыжакова Надежда Кирилловна

Шилова Ксения Олеговна

Даты

2018-05-31Публикация

2017-06-01Подача