В настоящее время актуальной задачей является защита радиоэлектронной аппаратуры (РЭА) от сверхкоротких импульсов (СКИ) наносекундного и субнаносекундного диапазонов, которые способны проникать в различные узлы РЭА, минуя электромагнитные экраны устройств. Традиционными схемотехническими средствами защиты от таких импульсов являются фильтры, устройства развязки, ограничители помех, разрядные устройства, а конструктивными - защитные экраны и методы повышения однородности экранов, заземление и методы уменьшения импедансов цепей питания. Известно, что включаемые на входе аппаратуры устройства защиты обладают рядом недостатков (малая мощность, недостаточное быстродействие, паразитные параметры), затрудняющих защиту от мощных СКИ. Эффективная защита в широком диапазоне воздействий требует сложных многоступенчатых устройств. Между тем, наряду с высокими характеристиками, практика требует простоты и дешевизны устройств защиты, поэтому необходима разработка новых устройств защиты от СКИ.
Наиболее близкой к заявляемому устройству является микрополосковая линия задержки, защищающая от сверхкоротких импульсов [Surovtsev R.S., Nosov A.V., Zabolotsky A.M. Simple Method of Protection against UWB Pulses Based on a Turn of Meander Microstrip Line Proc. of 16-th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices / R.S. Surovtsev, A.V. Nosov, A.M. Zabolotsky // Novosibirsk State Technical University. - Erlagol, Altai - 29 June - 3 Jule, 2015, pp. 175-177], которая состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии, одновременно обеспечивающих: равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия; значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию; минимальную амплитуду сигнала на выходе линии.
Недостатками устройства-прототипа являются малая длительность СКИ, от которого может быть обеспечена защита РЭА, и малое ослабление его амплитуды.
Заявляется линия задержки, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечиваются равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия, значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию, отличающаяся тем, что выбором параметров поперечного сечения линии минимизируется модуль разности значений максимальной и удвоенной минимальной из погонных задержек и выравниваются амплитуды первых трех импульсов на выходе линии.
Достоинством заявляемого устройства, в отличие от устройства-прототипа, являются увеличенная длительность СКИ, защита от которого может быть обеспечена, и увеличенное ослабление его амплитуды.
Техническим результатом является увеличение длительности СКИ, который может быть полностью разложен в витке меандровой линии задержки, а также увеличенное ослабление его амплитуды на выходе линии. Прежде всего, технический результат достигается за счет разноса по времени импульсов четной и нечетной моды на значение, равное произведению удвоенной длины линии и минимальной из погонных задержек четной или нечетной мод линии. Это обеспечивается за счет минимизации модуля разности значения максимальной из погонных задержек четной и нечетной мод линии и значения минимальной из этих задержек. Обеспечение этого условия позволяет увеличить длительность исходного импульса, разлагаемого на последовательность импульсов с меньшей амплитудой. Первые три импульса (импульс перекрестной наводки и импульсы четной и нечетной мод) разнесены относительно друг друга по времени на одинаковое значение, равное удвоенному произведению длины линии и минимального из значений погонной задержки четной и нечетной мод. Позже, к концу линии будут приходить импульсы чередующейся полярности, вызванные отражениями, и отстоящие от первых трех импульсов и относительно друг друга на значение, равное удвоенному произведению длины линии и минимального из значений погонной задержки четной и нечетной мод. Последнее условие может быть обеспечено за счет сильной торцевой связи между сигнальными проводниками линии, например за счет уменьшения расстояния между ними, выбором оптимального значения которого можно выровнять и минимизировать амплитуды первых трех импульсов сигнала на выходе линии. Таким образом, за счет разложения исходного импульса на последовательность импульсов меньшей амплитуды обеспечивается защита от СКИ, за счет разноса этих импульсов на величину, равную удвоенному произведению длины линии и минимального из значений погонной задержки четной и нечетной мод, обеспечивается увеличенная (по сравнению с устройством-прототипом) длительность СКИ, который может быть разложен в такой линии, а за счет выбора оптимальной связи между сигнальными проводниками обеспечивается выравнивание амплитуд первых трех импульсов на выходе линии. При этом максимальная длительность полностью разлагаемого СКИ соответствует удвоенному произведению длины линии и значения наименьшей из погонных задержек четной или нечетной мод линии, а за счет выравнивания амплитуд первых трех импульсов минимизируется амплитуда выходного сигнала. Приведенные выше качественные оценки достижимости технического результата подтверждаются ниже количественными оценками, полученными в результате моделирования.
На фиг. 1а приведено поперечное сечение заявляемой линии, со следующими параметрами: w и t - ширина и толщина проводников соответственно, s - расстояние между проводниками, h - толщина диэлектрической подложки, εr - относительная диэлектрическая проницаемость подложки. На фиг. 1б приведена эквивалентная схема заявляемой линии. Она состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников длиной l=45 мм каждый, находящихся на диэлектрической подложке и соединенных между собой на одном конце. Один из проводников линии соединен с источником импульсных сигналов, представленным на схеме идеальным источником э.д.с. ЕГ и внутренним сопротивлением RГ. Форма э.д.с. источника имеет форму трапеции с длительностью плоской вершины 100 пс, а фронта и спада по 50 пс. Другой проводник линии соединен с приемным устройством, представленным на схеме сопротивлением RH.
Значения RГ и RH для минимизации отражения сигнала на концах проводников линии приняты равными среднему геометрическому волновых сопротивлений четной и нечетной мод линии:
где Z11 и Z12 - соответствующие коэффициенты матрицы импедансов Z.
Параметры поперечного сечения на фиг. 2б выбраны так, чтобы выполнялись условия:
где τmax и τmin - наибольшее и наименьшее из значений погонных задержек четной и нечетной мод соответственно, a tr, td и tƒ - длительности фронта, плоской вершины и спада импульса соответственно.
Выполнение условия (2) обеспечивает приход основного импульса сигнала к концу линии по окончании ближней перекрестной наводки от фронта сигнала. Условие (3) обеспечивает полное разложение импульса основного сигнала в конце линии на импульсы четной и нечетной мод. Наконец, выполнение условия (4) обеспечивает разложение СКИ с большей длительностью (до 2⋅l⋅τmin), в отличие от устройства прототипа.
Для доказательства реализуемости заявляемого устройства сначала рассмотрим линию задержки со следующими параметрами поперечного сечения: w=300 мкм, t=105 мкм, s=23 мкм, d=900 мкм, h=510 мкм, εr=10. Длина линии l=45 мм. Вычисленные матрицы погонных параметров:
Значения сопротивлений RH и RГ, вычисленные по (1) с помощью соответствующих коэффициентов матрицы Z, получились равными 32,06 Ом.
Погонные задержки четной и нечетной мод для симметричной, относительно опорного проводника, структуры связанных линий передачи вычисляются как [Малютин Н.Д. Многосвязные полосковые структуры и устройства на их основе / Н.Д. Малютин. - Томск: Изд-во Том. ун-та, 1990. - 164 с.]
где С11 и С12, L11 и L12 - соответствующие элементы матриц (коэффициентов электростатической и электромагнитной индукции) L и С.
По выражению (5) с помощью соответствующих коэффициентов матриц С и L получим τe=8,10 нс/m, τo=5,46 нс/м. Так как погонная задержка нечетной моды имеет наименьшее значение, то ее произведение на удвоенную длину линии составляет 491,4 пс. Сумма длительностей фронта, плоской вершины и спада импульсного сигнала составляет 200 пс. Таким образом, условие (2) выполняется с запасом. Произведение модуля разности погонных задержек четной и нечетной мод линии на ее удвоенную длину составляет 237,6 пс. Таким образом, условие (3) выполняется. Однако не выполняется условие (4), поскольку разность максимальной из погонных задержек и удвоенной минимальной составляет 2,28 нс/м. Форма сигнала в конце такой линии при воздействии импульсом в виде трапеции с длительностью 200 пс представлена на фиг 2а. Как видно, при длительности воздействующего сигнала 200 пс его прохождение по витку меандровой линии приводит к разложению сигнала на три основных импульса (импульс перекрестной наводки на ближнем конце и импульсы четной и нечетной мод сигнала). Амплитуда этих импульсов составляет около 40% от амплитуды сигнала в начале линии. Позже к концу линии приходят импульсы разной полярности и меньшей амплитуды, вызванные отражениями. При увеличении длительности воздействующего сигнала до 500 пс (фиг. 2б) его прохождение по витку меандровой линии приводит к разложению исходного сигнала лишь на два основных импульса: импульс перекрестной наводки на ближнем конце и импульс, который является результатом суперпозиции импульсов четной и нечетной мод сигнала. При этом амплитуда сигнала увеличивается до 80% от амплитуды сигнала в начале линии. Таким образом, устройство позволяет получить минимальную амплитуду СКИ на выходе линии, но только для СКИ с длительностью менее 200 пс, поскольку не обеспечивает разложение СКИ с длительностями более 200 пс.
Следующей рассмотрим линию, поперечное сечение которой также соответствует фиг. 1а. Для обеспечения выполнения условий (2)-(4) параметры поперечного сечения выбраны следующими: w=300 мкм, t=205 мкм, s=17 мкм, d=900 мкм, h=510 мкм, εr=30. Длина линии l=45 мм. Вычисленные матрицы:
Значения сопротивлений RH и RГ, вычисленные по (1) с помощью соответствующих коэффициентов матрицы Z, получились равными 17,67 Ом.
По выражению (5) с помощью соответствующих коэффициентов матриц С и L получим τe=13,16 нс/м, τo=6,57 нс/м. Погонная задержка нечетной моды имеет наименьшее значение, а ее произведение на удвоенную длину линии составляет 591,3 пс. Сумма длительностей фронта, плоской вершины и спада импульсного сигнала составляет 200 пс. Таким образом, условие (2) выполняется с запасом. Произведение модуля разности погонных задержек четной и нечетной мод линии на ее удвоенную длину составляет 591,3 пс. Таким образом, условие (3) также выполняется. Наконец, выполняется условие (4), поскольку разность максимальной и удвоенной минимальной из погонных задержек составляет 0,002. Таким образом, условие (4) выполняется с точностью до третьего знака. На фиг. 3 приведены формы сигнала на выходе заявляемого устройства при воздействии импульсом в виде трапеции с длительностями 200 и 500 пс. Как видно из фиг. 3а, при воздействии импульсом с малой длительностью (200 пс) его прохождение по витку меандровой линии также приводит к разложению сигнала на три основных импульса (импульс перекрестной наводки и импульсы четной и нечетной мод сигнала), однако эти импульсы имеют разную амплитуду. Максимальная амплитуда выходного сигнала составляет около 50% от амплитуды сигнала в начале линии. Из фиг. 3б видно, что прохождение по витку меандровой линии импульса с длительностью 500 пс также приводит к его разложению на три основных импульса, а максимальная амплитуда выходного сигнала также составляет 50% от амплитуды сигнала в начале линии. Таким образом, устройство обеспечивает разложение импульсов с большей длительностью, но не обеспечивает должного ослабления амплитуды СКИ.
Наконец, рассмотрим заявляемую линию, поперечное сечение которой также соответствует фиг. 1а. Для обеспечения выполнения условий (2)-(4), а также для минимизации амплитуды на выходе заявляемой линии параметры поперечного сечения выбраны следующими: w=850 мкм, t=452 мкм, s=46 мкм, d=2550 мкм, h=540 мкм, εr=40. Длина линии l=45 мм. Вычисленные матрицы:
Значения сопротивлений RH и RГ, вычисленные по (1) с помощью соответствующих коэффициентов матрицы Z, получились равными 17,67 Ом.
По выражению (5) с помощью соответствующих коэффициентов матриц С и L получим τe=16,61 нс/м, τo=8,31 нс/м. Погонная задержка нечетной моды имеет наименьшее значение, а ее произведение на удвоенную длину линии составляет 747,9 пс. Сумма длительностей фронта, плоской вершины и спада импульсного сигнала составляет 200 пс. Таким образом, условие (2) выполняется с запасом. Произведение модуля разности погонных задержек четной и нечетной мод линии на ее удвоенную длину составляет 747 пс. Таким образом, условие (3) также выполняется. Наконец, выполняется условие (4), поскольку разность максимальной и удвоенной минимальной из погонных задержек составляет 0,01. Таким образом, условие (4) выполняется с точностью до второго знака. На фиг. 4 приведены формы сигнала на выходе заявляемого устройства при воздействии импульсом в виде трапеции с длительностью 200 и 500 пс. Как видно из фиг. 4а, при воздействии импульсом с малой длительностью (200 пс) его прохождение по витку меандровой линии также приводит к разложению сигнала на три основных импульса (импульс перекрестной наводки и импульсы четной и нечетной мод сигнала) одинаковой амплитуды. Максимальная амплитуда выходного сигнала составляет около 32% от амплитуды сигнала в начале линии. Из фиг. 4б видно, что прохождение по витку меандровой линии импульса с длительностью 500 пс также приводит к его разложению на три основных импульса с одинаковой и минимальной амплитудой, которая составляет около 32% от амплитуды сигнала в начале линии. Таким образом, устройство обеспечивает разложение СКИ с большей длительностью и с большим ослаблением амплитуды выходного сигнала.
Таким образом, показан технический результат, на достижение которого направлена заявляемая линия - увеличение длительности и ослабление амплитуды СКИ, от которого требуется защита.
название | год | авторы | номер документа |
---|---|---|---|
ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ | 2016 |
|
RU2637484C1 |
МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2607252C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2606709C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ ИЗ ДВУХ ВИТКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2019 |
|
RU2724970C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ | 2019 |
|
RU2742049C1 |
МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ВИТКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2019 |
|
RU2724972C1 |
ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2597940C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ВИТКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2600098C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ВИТКОВ С РАЗНЫМИ РАЗНОСАМИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2606776C1 |
УСОВЕРШЕНСТВОВАННАЯ МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2019 |
|
RU2724983C1 |
Изобретение относится к электротехнике. Техническим результатом является увеличение длительности сверхкоротких импульсов для обеспечения защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Технический результат достигается за счет линии задержки, состоящей из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечиваются равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия, значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию. Выбором параметров поперечного сечения линии минимизируются модуль разности значений максимальной и удвоенной минимальной из погонных задержек и выравниваются амплитуды первых трех импульсов на выходе линии. 4 ил.
Линия задержки, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечиваются равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия, значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию, отличающаяся тем, что выбором параметров поперечного сечения линии минимизируется модуль разности значений максимальной и удвоенной минимальной из погонных задержек и выравниваются амплитуды первых трех импульсов на выходе линии.
ЛИНИЯ ЗАДЕРЖКИ, НЕИСКАЖАЮЩАЯ ИМПУЛЬС | 2013 |
|
RU2556438C1 |
МИКРОПОЛОСКОВАЯ ЛИНИЯ СО СТАБИЛЬНОЙ ЗАДЕРЖКОЙ | 2013 |
|
RU2584502C2 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ВИТКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2600098C1 |
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз | 1924 |
|
SU2014A1 |
US 7453935 B2, 18.11.2008. |
Авторы
Даты
2018-06-06—Публикация
2016-10-21—Подача