СПОСОБ ПОСТРОЕНИЯ КОМПАКТНЫХ ДЕЛИТЕЛЕЙ МОЩНОСТИ СВЧ СИГНАЛОВ Российский патент 2018 года по МПК H01P5/12 

Описание патента на изобретение RU2658093C1

Изобретение относится к области сверхвысокочастотной (СВЧ) радиотехники и может быть использовано при построении делителей мощности на два, три и более выходных каналов, согласованных по входу делителей мощности, балансных СВЧ усилителей, фазовращателей, смесителей, мультиплексоров, схем формирования излучения антенных решеток.

Задача построения делителей на полосковых линиях существует давно и предложено множество вариантов ее решения. Так, известен классический делитель мощности на два канала Уилкинсона [1] с равным делением мощности и развязкой между выходными каналами. В [2] предложена схема построения и дана методика расчета модифицированного делителя типа Уилкинсона с неравным делением, уступающего классическому в компактности из-за наличия согласующих отрезков на входе и выходах делителя. В работе [3] рассмотрен способ реализации развязанного делителя типа Уилкинсона с тремя выходными каналами и равномерным делением мощности, содержащего резисторы, которые соединены со схемой навесными мостами или перемычками. Существенным недостатком всех делителей этого типа является использование для обеспечения развязки внутренних резисторов, работающих в режиме четырехполюсника. Такие резисторы вследствие конечности (неточечности) их размеров привносят дополнительные тепловые потери при делении.

Другим типом делителей мощности, свободным от отмеченного выше недостатка, можно считать делители Гайсела, у которых развязывающие резисторы работают в режиме двухполюсника [4]. Они менее компактны по сравнению с делителями Уилкинсона, однако при реализации в интегральном исполнении позволяют при неравном делении на два канала получать существенное различие в уровнях выходных мощностей [5].

К третьему типу устройств, на основе которых разрабатываются делители, можно отнести согласованные четырехплечие устройства в виде направленных ответвителей (НО) и прежде всего шлейфных ответвителей, гибридных колец и НО на связанных микрополосковых линиях передачи. Существует множество схемотехнических приемов уменьшения их габаритных размеров, расширения рабочей полосы частот, улучшения технологичности конструкций [6].

Среди отмеченных следует выделить НО на связанных линиях и прежде всего НО типа Ланге, так как они отличаются малыми габаритами, широкополосностью по согласованию и развязке, а также возможностью объединения в цепочечную схему. Недостатком НО типа Ланге можно считать практическую невозможность реализовывать сильную связь между микрополосковыми линиями, превышающую -3 дБ, нетехнологичность конструкции из-за наличия воздушных проволочных перемычек для обеспечения гальванического контакта между проводниками, а также отсутствие развязки по постоянному току между входным и одним из выходных каналов. К примеру, компактный делитель мощности с равномерным делением между тремя выходными каналами получается соединением по цепочечной схеме двух противонаправленных НО типа Ланге с переходными ослаблениями -4.8 дБ и -3 дБ. Здесь нужно упомянуть и о согласованных по входу делителях мощности при подключении к их выходным плечам одинаковых рассогласованных нагрузок [7].

При построении делителя на большее число каналов целесообразно применять квазицепочечную схему, когда некоторые НО включаются в схему каскадно. В отличие от цепочечной схемы входящие в нее выходные плечи этих НО заменяются другими выходными плечами того же НО, а прежние выходные плечи подключаются к выходным каналам делителя. Эту схему можно считать обобщением цепочечной. Разумеется, что рассматриваемым делителям присущи те же недостатки, что и ответвителям, и к ним еще добавляется повышенная неравномерность деления в полосе частот, превышающая неравномерность каждого из входящих в него НО.

Следовательно, ставя задачу создания простой, компактной, технологичной, максимально приспособленной для объединения в единую схему с полупроводниковыми элементами плоскостной конструкции делителя на заземленной диэлектрической подложке, целесообразно остановиться на ответвителях на связанных линиях передачи.

Относительно недавно был предложен и активно исследуется новый тип компактных НО, который предполагает использование композитных элементов на основе искусственно создаваемых периодических структур. Так, в [8] показана топология, дан расчет схемы и приведены результаты экспериментальной проверки гибридного транснаправленного ответвителя (ТНО), когда в оба плеча вторичного канала ответвляется по -3 дБ падающей мощности. В нем две одинаковые параллельные микрополосковые линии расположены на заземленной диэлектрической подложке и связаны друг с другом не только электромагнитной связью, но дополнительно и электрической связью посредством включаемых между линиями и располагаемых эквидистантно вдоль ответвителя одинаковых конденсаторов С1 малой емкости и малых размеров (фиг. 1).

Этот гибридный ТНО, рассматриваемый как делитель мощности на два выходных канала с одинаковой мощностью, которые подключаются к плечам вторичного канала ТНО, и принимается за прототип. Важное достоинство прототипа хорошо известно: это отсутствие гальванической связи между входным и выходными каналами. Основным же достоинством прототипа является обнаруженная авторами заявки возможность модификации ответвителя: его реализация в виде двух конструкций с неравным делением мощности между плечами вторичного канала. Так, если более половины падающей на плечо а мощности поступает в плечо b, а менее половины - в плечо d (см. фиг. 1), то получаем ТНО с сильной связью, в противном случае - ТНО со слабой связью, при этом плечо с, к которому подключается балластный резистор (равный по величине волновому сопротивлению тракта Z), считается развязанным. К примеру, на фиг. 2а, б показаны топологии ТНО со слабой и сильной связью (обозначаемые как THO1 и ТНO2 и учитывающие особенности установки навесных конденсаторов), когда в плечо b вторичного канала b-d поступают соответственно -4.8 дБ и -1.8 дБ мощности, падающей на плечо а (вход) основного канала а-с, то есть отношение мощностей в плечах вторичного канала составляет 2:1. Это отношение, записанное одним числом (в данном случае 2), будем называть коэффициентом деления, а максимальное его значение, при котором параметры ТНО (ширина полосковых проводников и расстояние между ними) еще удовлетворяют технологическим допускам - предельным коэффициентом деления. На фиг. 2в приведена топология гибридного THO3 с коэффициентом деления 1. Здесь нужно отметить, что понятийная база для описания подобных структур еще не устоялась.

На фиг. 3а, 3б и 3в приведены блок-схемы соответствующих делителей на основе ТНО1, THO2 и THO3, цифрами обозначены номера входных и выходных плеч делителей. Балластный резистор Z конструктивно может быть как внешним, так и внутренним, а функционально - только внутренним. Он обеспечивает согласование с трактом и развязку между выходными плечами 2 и 3 делителя. На фиг. 4а, б, в показаны частотные зависимости модулей элементов |Sij| матрицы рассеяния S рассматриваемых делителей как трехплечих устройств, в которых j и i означают номера плеч, куда поступает и откуда выходит СВЧ сигнал соответственно. Все вычисления проведены с использованием пакета схемотехнического и электродинамического моделирования Microwave Office [9]. Видно, что из трех приведенных вариантов делитель на основе THO2 с сильной связью является наиболее широкополосным по развязке (по уровню -20 дБ). Расчеты проводились при подложке толщиной 2 мм и диэлектрической проницаемости 10; зазоры между связанными линиями, ширины линий и значения емкостей для всех трех случаев получились различными и, соответственно, равными: 3 мм, 0.38 мм и 2.8 пф - для THO1; 0.27 мм, 0.36 мм и 5.9 пф - для THO2; 1.0 мм, 0.45 мм и 4 пф - для THO3.

Существенным недостатком прототипа является малое число его выходных каналов (только два).

Достигаемым техническим результатом предлагаемого изобретения является построение на основе ТНО делителя мощности на несколько (N≥2) выходных каналов по заданному распределению мощностей в них с сохранением развязки по постоянному току между входным и выходными каналами.

Разработка способа построения на основе ТНО делителя мощности на несколько выходных каналов по заданному распределению мощностей в них основана на возможности модификации гибридного ТНО в ответвители с сильной и слабой связью и на объединении их в делитель с помощью квазицепочечной схемы.

Указанный технический результат достигается тем, что при осуществлении способа построения делителя, где требуемое распределение мощности между выходными каналами, развязанными по постоянному току с входным каналом, реализуют с помощью транснаправленных ответвителей (ТНО), каждый из которых представляет собой две микрополосковые линии передачи, расположенные параллельно на заземленной диэлектрической подложке и связанные друг с другом электромагнитной связью и дополнительно электрической связью с помощью одинаковых эквидистантно устанавливаемых конденсаторов малой емкости и малых размеров, согласно изобретению, сначала задают в программном пакете рабочую полосу частот и параметры диэлектрической подложки (толщину подложки, ее диэлектрическую проницаемость), затем вычисляют предельный, общий для всех ТНО, коэффициент деления между выходными плечами при оптимальных характеристиках ТНО по критерию максимальной развязки в заданной полосе частот, после этого, исходя из заданного распределения мощностей в выходных каналах делителя, удобству расположения выходов делителя и компактности схемы в целом, выбирают квазицепочечную схему построения делителя из ТНО, из которой находят коэффициенты деления каждого ТНО с учетом того, что эти коэффициенты не должны превышать их предельных значений, и решают оптимизационную задачу по варьированию геометрических размеров линий и величин емкостей конденсаторов при найденных коэффициентах деления каждого ТНО по критериям максимальной развязки и минимального коэффициента стоячей волны (КСВ) в заданной полосе частот и через матрицы рассеяния ТНО, объединенные квазицепочечной схемой, производят окончательный расчет делителя, включающий в себя дополнительную оптимизацию схемы делителя по тем же, вышеописанным, варьируемым параметрам, но по критериям максимальной развязки между выходными каналами делителя, минимального КСВ на всех его плечах, минимальных потерях в режиме деления при требуемых значениях коэффициентов передачи между входным и выходными плечами в заданной полосе частот.

Достаточность приведенных выше требований вытекает из симметрии входящих в состав делителя ТНО, для которых справедливо утверждение: «если в электрически симметричном восьмиполюснике имеется хотя бы одна пара плеч, полностью развязанных между собой, то это устройство является идеальным направленным ответвителем» [10].

Осуществление способа продемонстрируем на нескольких примерах. Так, фиг. 5а и 5б, на которых изображены блок-схемы соединения двух различных ТНО, иллюстрируют варианты способа построения делителей с равным делением -4.8 дБ на три выходные канала: первый вариант предполагает подачу входного сигнала на делитель через ответвитель со слабой связью (THO1 фиг. 2а), то есть по классической цепочечной схеме, а второй вариант - через ответвитель с сильной связью (ТНО2 фиг. 2б) - по квазицепочечной. На фиг. 6а и 6б показаны частотные зависимости коэффициентов деления и развязок между каналами для первого варианта, а на фиг. 6в и 6г - для второго. Из этих зависимостей видно, что делитель, в котором применен THO2 с сильной связью, является более широкополосным по развязке по сравнению с делителем на основе ТНО1.

На фиг. 7 показана блок-схема делителя на 4 выходных канала с неравным делением мощности, а именно, в пропорции 1:2:3:4. Складывая первые три цифры в пропорции, получаем 6:4, что дает приемлемый коэффициент деления первого ТНО в квазицепочечной схеме, не превышающий предельный. Каждый ТНО представлен прямоугольником, внутри которого показано отношение мощностей, поступающих на выходы второго и четвертого плеч ТНО, соответственно, при условии падения на вход ТНО мощности, равной сумме мощностей на выходах. Из схемы видно, что, с учетом расположения входного плеча делителя, первый ТНО является ответвителем с сильной связью.

Делитель работает следующим образом. Сигнал поступает на вход 1 делителя и после деления в первом ТНО на две части, сигнал меньшей мощности поступает в выходное плечо 5 делителя, а сигнал большей мощности - на гибридный ТНО, после которого, разделившись, он в равных долях идет в выходное плечо 4 делителя и на сильно связанный ТНО с коэффициентом деления 2, откуда в соотношении по мощности 1:2 поступает в плечи 2 и 3 делителя, соответственно. В результате получаем квазицепочечную схему деления, которая делит входной сигнал в заданной пропорции и объединяет воедино один гибридный ТНО и два ТНО с сильной связью с коэффициентами деления 1.5 и 2.

На фиг. 8а показаны частотные зависимости коэффициентов передачи (модули элементов матрицы рассеяния S) при возбуждении делителя со стороны входа (плечо 1), включая плечи с балластными резисторами, на фиг. 8б приведены аналогичные кривые, характеризующие развязку между выходными каналами, а на фиг. 8в изображены зависимости КСВ со стороны входа и всех выходов делителя.

Альтернативный вариант построения показанного на фиг. 7 делителя получается в случае, если первый ТНО с коэффициентом деления 1.5 заменить на ТНО со слабой связью с тем же коэффициентом деления, а вход 1 делителя и балластный резистор Z поменять местами; при этом квазицепочечная схема превращается в цепочечную (фиг. 9).

Таким образом, предложенный способ построения компактных делителей мощности СВЧ сигналов на N≥2 выходных каналов по заданному распределению мощностей в них, основанный на использовании известного способа деления СВЧ мощности на две равные части с помощью гибридного ТНО и способа деления СВЧ мощности на две неравные части с помощью ТНО с сильной и слабой связью путем объединения этих ТНО в делитель, собираемый по квазицепочечной схеме, позволяет создавать простые, компактные, технологичные, приспособленные для объединения в единую схему с полупроводниковыми элементами плоскостные конструкции делителей на заземленной диэлектрической подложке.

Источники информации

1. Cohn S. В. A New Class of Broadband Three-Port TEM-Mode Hybrids (Новый класс широкополосных трехплечих ТЕМ гибридных устройств), IEEE Trans, on Microwave Theory and Techniques, 1968, vol. MTT-16, no. 2, pp. 110-116.

2. Ahn H.-R. and Wolf I. General Design Equations, Small-Sized Impedance Transformers and Their Application to Small-Sized Three-Port 3-dB Power Dividers (Общие расчетные формулы, малогабаритные трансформаторы импеданса и их применение в малогабаритных трехплечих 3 дБ-ных делителях мощности), IEEE Trans, on Microwave Theory and Techniques, 2001, vol. MTT-49, no. 7, pp. 1277-1288.

3. Maurin D. and Wu K. A Compact 1.7-2.1 GHz Three-Way Power Combiner Using Microstrip Technology with Better Than 93.8% Combining Efficiency (Компактные 1,7-2,1 ГГц сумматоры мощности с тремя входами, выполненные по микрополосковой технологии, с КПД выше 93,8%), IEEE Microwave and Guided Wave Letters, vol. 6, No. 2, February 1996, pp. 106-108.

4. Ooi Ban-Leong, Palei W., Leong M.S. Broad-banding technique for in-phase hybrid ring equal power divider // IEEE Trans, on Microwave Theory and Techniques. 2002. V. 50. No. 7. P. 790-794. (Метод создания широкополосного синфазного равноамплитудного делителя мощности на основе гибридного кольца).

5. Андрюшина В.Ю., Темнов В.М. Разработка микрополосковых делителей мощности для передающих ФАР // Электромагнитные волны и электронные системы - 2011 - №6, - Т. 16, С. 67-75.

6. Печурин В.А., Петров А.С. Делители-сумматоры мощности СВЧ-диапазона, Успехи современной радиоэлектроники, 2010, №2, С. 5-42.

7. Темнов В.М. Согласованный делитель мощности сверхвысокочастотных квазигармонических сигналов // Патент на полезную модель №161585, опубл. 27.04.2016. Бюл. №12.

8. Shie С.-I., Cheng J.C., Chou S.-C, and Chiang Y.-C. Transdirectional Coupled-Line Couplers Implemented by Periodical Shunt Capacitors (Транснаправленные ответвители на связанных линиях передачи с периодически включенными шунтирующими конденсаторами), IEEE Trans, on Microwave Theory and Techniques, 2009, vol. 57, No. 12, pp. 2981-2988 (прототип)

9. Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ устройств с помощью Microwave Office / Под ред. В.Д. Разевига, М.: СОЛОН-Пресс, 2003, 496 с.

10. Будурис Ж., Шеневье П. Цепи сверхвысоких частот. (Теория и применение): Пер. с франц. / Под ред. проф. А.Л. Зиновьева, М.: «Советское радио», 1979, 288 с.

Похожие патенты RU2658093C1

название год авторы номер документа
АНТЕННОЕ ПЕРЕКЛЮЧАЮЩЕЕ УСТРОЙСТВО (АПУ) 2016
  • Темнов Владимир Матвеевич
  • Андрюшина Вера Юрьевна
RU2633654C1
МИКРОПОЛОСКОВОЕ АНТЕННОЕ ПЕРЕКЛЮЧАЮЩЕЕ УСТРОЙСТВО (МАПУ) 2010
  • Темнов Владимир Матвеевич
  • Андрюшина Вера Юрьевна
RU2447553C1
ТАНДЕМНЫЙ ОТВЕТВИТЕЛЬ НА СВЯЗАННЫХ ЛИНИЯХ 2018
  • Беляков Владимир Александрович
  • Апакин Юрий Игоревич
  • Гаврилов Юрий Андреевич
  • Мартынов Александр Петрович
RU2685551C1
ФИДЕРНАЯ СИСТЕМА ДЛЯ ЭЛЕКТРОМАГНИТНОГО СИГНАЛА И АНТЕННА (ВАРИАНТЫ) 1993
  • Брайаноз Джеймз[Us]
  • Соул Тимоти[Us]
  • Хэррис Майкл[Us]
RU2107974C1
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ 2015
  • Темнов Владимир Матвеевич
  • Андрюшина Вера Юрьевна
RU2601233C1
СВЧ-УСТРОЙСТВО ДЛЯ ПОДАВЛЕНИЯ СЛАБЫХ СИГНАЛОВ ВБЛИЗИ ЧАСТОТЫ СИЛЬНОГО СИГНАЛА 2005
  • Шараевский Юрий Павлович
  • Гришин Сергей Валерьевич
RU2281587C1
КОМПЛЕКСИРОВАННОЕ ИЗДЕЛИЕ СВЕРХВЫСОКОЧАСТОТНОГО ДИАПАЗОНА 1999
  • Баркалов А.Г.
  • Ломаченко С.А.
  • Кожевников Б.К.
  • Назаров Н.М.
  • Баркалов П.А.
  • Епанина Е.А.
RU2161856C1
ДЕЛИТЕЛЬ МОЩНОСТИ 2013
  • Говорухин Валерий Иванович
  • Унру Николай Эдуардович
RU2553095C1
МНОГОКАНАЛЬНЫЙ ДЕЛИТЕЛЬ МОЩНОСТИ 2012
  • Говорухин Валерий Иванович
  • Унру Николай Эдуардович
RU2526742C2
Способ повышения дальности активной ретрансляции сигналов радиочастотной идентификации УВЧ-диапазона 2023
  • Жирнова Екатерина Сергеевна
  • Клюев Дмитрий Сергеевич
  • Плотников Александр Михайлович
  • Соколова Юлия Владимировна
RU2808932C1

Иллюстрации к изобретению RU 2 658 093 C1

Реферат патента 2018 года СПОСОБ ПОСТРОЕНИЯ КОМПАКТНЫХ ДЕЛИТЕЛЕЙ МОЩНОСТИ СВЧ СИГНАЛОВ

Изобретение относится к области сверхвысокочастотной радиотехники, в частности к делителям мощности. Способ построения компактных делителей мощности сверхвысокочастотных сигналов основан на объединении транснаправленных ответвителей в делитель, собираемый по квазицепочечной схеме с учетом заданного расположения выходных каналов по критериям минимальных потерь, максимальной развязки между выходными каналами и минимального коэффициента стоячей волны на всех его плечах. При этом выполняют деление сигналов с помощью гибридного транснаправленного ответвителя на две равные части. Дополнительно осуществляют деление мощности на две неравные части с помощью дополнительных транснаправленных ответвителей с сильной и слабой связью. Технический результат - увеличение количества выходных каналов. 9 ил.

Формула изобретения RU 2 658 093 C1

Способ построения компактных делителей мощности сверхвысокочастотных (СВЧ) сигналов, основанный на известном способе деления с помощью гибридного транснаправленного ответвителя (ТНО) входной СВЧ мощности на две равные части, отличающийся тем, что дополнительно используются его модификации, обеспечивающие деление СВЧ мощности на две неравные части с помощью ТНО с сильной и слабой связью путем объединения этих ТНО в делитель, собираемый по квазицепочечной схеме с учетом заданного расположения выходных каналов по критериям минимальных потерь, максимальной развязки между выходными каналами и минимального коэффициента стоячей волны на всех его плечах.

Документы, цитированные в отчете о поиске Патент 2018 года RU2658093C1

Shie, C
I., J
C
Cheng, S
C
Chou, and Y
C
Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans
Microwave Theory Tech., Vol
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
0
SU161585A1
АНДРЮШИНА В.Ю
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для передачи фотографических изображений на расстояние 1920
  • Адамиан И.А.
SU170A1
US 5206611 A1, 27.04.1993
US 5285175 A1, 08.02.1994
WO 2003065495 A1, 07.08.2003
US 4612548 A1, 16.09.1986
US 4263559 A1, 21.04.1981
US 4668953 A1, 26.05.1987.

RU 2 658 093 C1

Авторы

Темнов Владимир Матвеевич

Тереханова Вера Юрьевна

Даты

2018-06-19Публикация

2017-02-27Подача