ТИРИСТОРНЫЙ РАДИАТОР В СБОРЕ ДЛЯ ПРЕДОХРАНИТЕЛЬНОГО КЛАПАНА ПОСТОЯННОГО ТОКА Российский патент 2018 года по МПК H01L23/473 H01L23/367 H03K17/72 

Описание патента на изобретение RU2660293C1

ОБЛАСТЬ ПРИМЕНЕНИЯ

Данное изобретение используется при эксплуатации передающих предохранительных клапанов постоянного тока и, в частности, представляет собой тиристорный радиатор в сборе для предохранительного клапана постоянного тока.

ОБЩИЕ СВЕДЕНИЯ

Предохранительные клапаны постоянного тока являются основными устройствами для передачи постоянного тока. Как правило, в конструкцию данного элемента входит множество компонентов (тиристор, анодный реактор и т.д.). Сборка тиристора состоит из самого тиристора, радиатора, демпфирующего резистора, демпфирующего конденсатора и соответствующей системы охлаждения. Предохранительный клапан имеет сложную конструкцию, которая включает в себя множество деталей. В ходе эксплуатации предохранительного клапана по различным причинам могут возникнуть разнообразные неисправности. Если это произошло, клапан необходимо своевременно отремонтировать, чтобы вернуть его к нормальной работе. Именно поэтому на разных этапах проектирования необходимо учитывать удобство обслуживания предохранительного клапана.

На сегодняшний день в сборке тиристора, как правило, используются два типа демпфирующих резисторов. Первый тип представляет собой водяной резистор, который находится в непосредственном контакте с охлаждающей водой, самостоятельно распределяет тепло и никак не соприкасается с тиристорным радиатором и его трубопроводом для охлаждающей воды. Когда система охлаждения работает в нормальном режиме, демпфирующий резистор может надлежащим образом рассеивать тепло. Однако, если демпфирующий резистор неисправен, и требуется его ремонт, то перед выполнением соответствующих работ необходимо полностью слить охлаждающую воду из предохранительного клапана. Поэтому техническое обслуживание представляет собой трудный и трудоемкий процесс. Второй тип — стержневой резистор. В заранее предусмотренных сквозных отверстиях корпуса тиристорного радиатора в сборе установлено множество стержневых резисторов, которые отводят тепло через данное устройство, уменьшая количество соединений внутри преобразовательного клапана. В то же время некоторые стержневые резисторы могут создавать препятствия для прохождения охлаждающей воды по трубопроводу тиристорного радиатора. Это приводит к тому, что при проведении технического обслуживания стержневого резистора, создающего препятствия в контуре охлаждающей воды, перед разборкой трубопровода необходимо полностью сливать воду из предохранительного клапана, что значительно затрудняет выполнение работ.

ВЫВОДЫ

Целью данной разработки является создание тиристорного радиатора в сборе для предохранительного клапана постоянного тока.

Для достижения указанной цели используется следующее решение: тиристорный радиатор в сборе для клапана постоянного тока состоит из радиаторов, при этом тиристор размещается между каждой парой соседних радиаторов. В конструкции каждого радиатора предусмотрен корпус, отверстие для впуска воды в верхней части корпуса, отверстие для слива воды в нижней его части, сквозные отверстия в корпусе радиатора для установки демпфирующих резисторов, которые находятся между отверстиями для впуска и слива воды. Отверстие для слива воды радиатора N сообщается с отверстием для слива воды радиатора (N-2) через трубопровод, а отверстие для впуска воды радиатора N также сообщается с отверстием для впуска воды радиатора (N + 2) через трубопровод. Либо отверстие для впуска воды радиатора N сообщается с отверстием для впуска воды радиатора (N-2) через трубопровод, а отверстие для слива воды радиатора N также сообщается с отверстием для слива воды радиатора (N + 2) через трубопровод, при этом N≥3, а N — это нечетное число. Отверстие для слива воды радиатора М сообщается с отверстием для слива воды радиатора (М-2) через трубопровод, а отверстие для впуска воды радиатора М также сообщается с отверстием для впуска воды радиатора (М + 2) через трубопровод. Либо отверстие для впуска воды радиатора М сообщается с отверстием для впуска воды радиатора (М-2) через трубопровод, а отверстие для слива воды радиатора М также сообщается с отверстием для слива воды радиатора (M + 2) через трубопровод, при этом M≥4, а М — это четное число. Отверстия для впуска воды двух последних радиаторов соединены друг с другом с помощью трубопровода.

В настоящем изобретении улучшена конструкция радиатора N, который соединен с радиатором (N-2) при помощи Т-образного трубопровода. При этом радиатор N также соединен с радиатором (N + 2) с помощью Т-образного трубопровода.

В улучшенной конструкции данного изделия Т-образные трубопроводы состоят из продольной и двух поперечных труб, которые проходят параллельно друг другу. Один конец каждой из поперечных труб сообщается с радиатором, а другой соединен с продольной трубой.

Кроме того, была улучшена конструкция радиатора M, который соединяется с радиатором (М-2) при помощи коленчатого патрубка. Радиатор M также соединяется с радиатором (М + 2) при помощи коленчатого патрубка. Коленчатые патрубки состоят из прямой трубы и колен, которые соединяются с прямой трубой и располагаются на двух ее концах.

В улучшенной конструкции данного изделия каждый из коленчатых патрубков состоит из первой поперечной трубы, наклонной трубы и второй поперечной трубы. Первая поперечная труба, наклонная труба и вторая поперечная труба последовательно соединяются друг с другом, при этом первая поперечная труба проходит параллельно второй поперечной трубе.

Благодаря разработке описанного выше решения, данное изделие обладает следующими преимуществами:

1. Демпфирующий резистор расположен внутри тиристорного радиатора, благодаря чему уменьшается количество соединений в системе охлаждения, снижается риск утечки и повышается надежность работы предохранительного клапана.

2. Демпфирующий резистор, расположенный внутри тиристорного радиатора, не создает помех для провождения воды по трубопроводу радиатора. Поэтому при проведении технического обслуживания демпфирующего резистора не нужно демонтировать трубы, что значительно упрощает работу и сокращает период времени, необходимый для ее выполнения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 — структурная схема данного изделия.

Фиг. 2 — структурная схема прямой трубы данного изделия.

Фиг. 3 — структурная схема коленчатого патрубка данного изделия.

ОПИСАНИЕ РАЗЛИЧНЫХ КОНСТРУКТИВНЫХ ИСПОЛНЕНИЙ

Ниже приводится подробное описание технических решений, использованных при разработке данного изделия, со ссылкой на прилагаемые чертежи и конкретные данные.

Конструктивное исполнение 1

Согласно Фиг. 1, фиг. 2 и фиг. 3, данный тиристорный радиатор в сборе для предохранительного клапана постоянного тока состоит из радиаторов 2 и тиристора 1, который располагается между каждой парой смежных радиаторов 2. Каждый из радиаторов 2 состоит из корпуса, отверстия 3 для впуска воды, расположенного в верхней части корпуса, отверстия 4 для слива воды, расположенного в нижней части корпуса, а также сквозных отверстий 5–10 в корпусе, которые используются для размещения демпфирующих резисторов и расположены между отверстием 3 для впуска воды и отверстием 4 для слива воды. Отверстие 4 для слива воды первого радиатора 2 сообщается с отверстием 4 для слива воды третьего радиатора 2 через трубопровод 11. Отверстие 3 для впуска воды третьего радиатора 2 сообщается с отверстием 3 для впуска воды пятого радиатора 2 через трубопровод, а отверстие 4 для слива воды пятого радиатора 2 сообщается с отверстием 4 для слива воды седьмого радиатора 2 через трубопровод 11. Отверстие 4 для слива воды второго радиатора 2 сообщается с отверстием для слива воды 4 четвертого радиатора 2. Отверстие 3 для впуска воды четвертого радиатора 2 сообщается с отверстием 3 для впуска воды шестого радиатора 2, а отверстие 4 для слива воды шестого радиатора 2 сообщается с отверстием для слива воды 4 восьмого радиатора 2. Отверстия 3 для впуска воды двух последних радиаторов 2 соединены друг с другом при помощи трубопровода.

В наиболее оптимальном конструктивном решении радиаторы с нечетными номерами соединяются друг с другом при помощи Т-образного трубопровода 11, который состоит из продольной трубы 15 и двух поперечных труб 14, параллельных друг другу. При этом один конец каждой поперечной трубы 14 сообщается с радиатором, а другой соединяется с продольной трубой 15.

Радиаторы с четными номерами соединяются друг с другом при помощи коленчатого патрубка 12, который состоит из прямой трубы 19 и колен, соединенных с прямой трубой 19 и расположенных на двух ее концах. Каждый из коленчатых патрубков состоит из первой поперечной трубы 16, наклонной трубы 17 и второй поперечной трубы 18. Первая поперечная труба 16, наклонная труба 17 и вторая поперечная труба 18 последовательно соединяются друг с другом, при этом первая поперечная труба 16 проходит параллельно второй поперечной трубе 18.

Длина поперечной трубы 14 Т-образного трубопровода 11 равна сумме длин первой поперечной трубы 16, второго колена 18 и наклонной трубы 17 коленчатого патрубка 12.

Приведенное выше конструктивное решение используется только для предоставления общей технической информации о данном изделии и не ограничивает варианты его компоновки. На любые внесенные модификации, которые базируются на разработанном техническом решении и соответствуют принципам работы данного изделия, распространяется действие авторских прав, защищенных соответствующим законодательством.

Похожие патенты RU2660293C1

название год авторы номер документа
ПРЕОБРАЗОВАТЕЛЬНЫЙ ВЕНТИЛЬ 2016
  • Чжан Сян
  • Лю Лэй
  • Фан Тайсюнь
  • Чэнь Чихань
  • Ли Чжао
  • Ли Хайин
  • Дин Фэнфэн
RU2668555C1
СПОСОБ МОНТАЖА ПРЕДОХРАНИТЕЛЬНОГО КЛАПАНА ПОСТОЯННОГО ТОКА 2016
  • Чжан Сян
  • Ян Фань
  • Бай Гоусин
  • Ли Чжао
  • Лю Лян
  • Ши Сяодун
RU2691361C1
КОНСТРУКЦИЯ КОЖУХА ПЛАНАРНОГО РЕЗИСТОРА 2017
  • Чжан Сян
  • Чэнь Чихань
  • Ли Чжао
  • Сун Гэ
  • Чжэн Ли
  • Ян Фань
RU2709794C1
ТОПОЛОГИЯ СХЕМЫ ДЕМПФИРОВАНИЯ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ, МЕТОД И ПРЕОБРАЗОВАТЕЛЬ НА ЕЕ ОСНОВЕ 2016
  • Ли Минь
  • Бо Чуаньцзюнь
  • Цзянь Тяньгуй
  • Чжу Минлянь
  • Се Еюань
RU2665683C1
Система электросети постоянного тока с несколькими уровнями напряжения, а также способ ее управления и защиты 2019
  • Се Еюань
  • Ли Хайин
  • Ван Юй
  • Чжан Чжунфэн
  • Цао Дунмин
RU2755516C1
СИСТЕМА ТЕСТИРОВАНИЯ ТИРИСТОРНОГО ВЕНТИЛЯ НА ОСНОВЕ ВЗАИМОДЕЙСТВИЯ ЛОГИЧЕСКИХ ФУНКЦИЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ 2018
  • Ян, Фань
  • Лю, Лэй
  • Чжан, Сян
  • Чжоу, Чэнь
  • Пань, Вэймин
  • Фан, Тайсюнь
RU2730388C1
КОМПЕНСАТОР, А ТАКЖЕ СПОСОБ И УСТРОЙСТВО ЕГО КОНТРОЛЯ 2019
  • Дун, Юньлун
  • Чжан, Баошунь
  • Пань, Лэй
  • Хуан, Жухай
RU2762792C1
СПОСОБ И СИСТЕМА РАННЕГО ОПОВЕЩЕНИЯ ОБ ОТКАЗЕ В ВЕНТИЛЕ ПРЕОБРАЗОВАТЕЛЯ 2017
  • Гао, Шэнфу
  • Фан, Тайсюнь
  • Ван, Юнпин
  • Чжан, Сян
  • Пань, Вэймин
  • Юань, Мин
  • Чжоу, Цюйцин
RU2695638C2
УСТРОЙСТВО КОМПЛЕКСНОГО РЕГУЛИРОВАНИЯ ПЕРЕТОКОВ МОЩНОСТИ ДЛЯ ДВУХЦЕПНОЙ ЛИНИИ 2015
  • Тиан Джи
  • Ли Хаиинг
  • Ванг Ксинбао
  • Донг Юнлонг
  • Шен Куанронг
  • Пан Лей
  • Лю Чао
  • Чанг Баоли
RU2664558C2
КАРТРИДЖ СОСТАВНОГО ФИЛЬТРА, УЗЕЛ КАРТРИДЖА СОСТАВНОГО ФИЛЬТРА И СИСТЕМА ОЧИСТКИ ВОДЫ 2017
  • Чжан Синчжи
  • Хэ Чжифэн
RU2676282C1

Иллюстрации к изобретению RU 2 660 293 C1

Реферат патента 2018 года ТИРИСТОРНЫЙ РАДИАТОР В СБОРЕ ДЛЯ ПРЕДОХРАНИТЕЛЬНОГО КЛАПАНА ПОСТОЯННОГО ТОКА

Изобретение используется при эксплуатации передающих предохранительных клапанов постоянного тока и, в частности, представляет собой тиристорный радиатор в сборе для предохранительного клапана постоянного тока. Отверстие для слива воды из радиатора N сообщается с отверстием для слива воды из радиатора (N-2). Отверстие для впуска воды в радиатор N сообщается с отверстием для впуска воды в радиатор (N+2). Либо отверстие для впуска воды в радиатор N сообщается с отверстием для впуска воды в радиатор (N-2), а отверстие для слива воды из радиатора N сообщается с отверстием для слива воды из радиатора (N+2). Отверстие для слива воды из радиатора M сообщается с отверстием для слива воды из радиатора (M-2), а отверстие для впуска воды в радиатор M сообщается с отверстием для впуска воды в радиатор (M+2). Либо отверстие для впуска воды в радиатор M сообщается с отверстием для впуска воды в радиатор (M-2), а отверстие для слива воды из радиатора M сообщается с отверстием для слива воды из радиатора (M+2). Отверстия для впуска воды двух последних радиаторов сообщаются между собой. В зависимости от параметров радиатора, уменьшается количество соединений системы охлаждения, снижается риск утечки, улучшается надежность работы клапана преобразователя, упрощается техническое обслуживаниея и сокращается время, необходимое для его проведения. Технический результат – создание улучшенной конструкции тиристорного радиатора в сборе для предохранительного клапана постоянного тока. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 660 293 C1

1. Тиристорный радиатор в сборе для предохранительного клапана постоянного тока, состоящий из радиаторов, тиристора, расположенного между каждой парой смежных радиаторов, причем в верхней части корпуса каждого радиатора предусмотрено отверстие для впуска воды, а отверстие для слива воды находится внизу данного элемента, кроме того, в корпусе радиатора выполнены сквозные отверстия для установки демпфирующих резисторов — они находятся между отверстиями для впуска и слива воды, при этом отверстие для слива воды радиатора N сообщается с отверстием для слива воды радиатора (N-2) через трубопровод, а отверстие для впуска воды радиатора N также сообщается с отверстием для впуска воды радиатора (N+2) через трубопровод либо отверстие для впуска воды радиатора N сообщается с отверстием для впуска воды радиатора (N-2) через трубопровод, а отверстие для слива воды радиатора N сообщается с отверстием для слива воды радиатора (N+2), при этом N≥3, и N — это нечетное число, причем отверстие для слива воды радиатора М сообщается с отверстием для слива воды радиатора (М-2) через трубопровод, а отверстие для впуска воды радиатора М также сообщается с отверстием для впуска воды радиатора (М+2) через трубопровод либо отверстие для впуска воды радиатора М сообщается с отверстием для впуска воды радиатора (М-2) через трубопровод, а отверстие для слива воды радиатора М сообщается с отверстием для слива воды радиатора (M+2), при этом M≥4, и M — это четное число, причем отверстия для впуска воды двух последних радиаторов соединены между собой при помощи трубопровода.

2. Тиристорный радиатор по п.1 отличающийся тем, что радиатор N соединен с радиатором (N-2) при помощи Т-образного трубопровода, а радиатор N также соединен с радиатором (N+2) при помощи Т-образного трубопровода.

3. Тиристорный радиатор по п.2 отличающийся тем, что Т-образные трубопроводы состоят из продольной и двух поперечных труб, которые проходят параллельно друг другу, причем один конец каждой из поперечных труб соединен с радиатором, а другой соединен с продольной трубой.

4. Тиристорный радиатор по п.1 отличающийся тем, что радиатор M соединен с радиатором (М-2) при помощи коленчатого патрубка, причем радиатор M также соединен с радиатором (М + 2) при помощи коленчатого патрубка, при этом коленчатые патрубки состоят из прямой трубы и колен, которые соединяются с прямой трубой и расположены на двух ее концах.

5. Тиристорный радиатор по п.4 отличающийся тем, что каждое из колен состоит из первой поперечной трубы, наклонной трубы и второй поперечной трубы, причем первая поперечная труба, наклонная труба и вторая поперечная труба последовательно соединяются друг с другом, при этом первая поперечная труба проходит параллельно второй поперечной трубе.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660293C1

CN 103354234 A, 16.10.2013
CN 103579144 A, 12.02.2014
CN 104201161 A, 10.12.2014
JP 2013026434 A, 04.02.2013.

RU 2 660 293 C1

Авторы

Чжан Сян

Фан Тайсюнь

Цао Дунмин

Чень Чихань

Чжан Гуантай

Лю Хайбинь

Даты

2018-07-05Публикация

2016-07-13Подача