ВЫДЕЛЕНИЕ РЕСУРСОВ PUCCH С УЛУЧШЕННЫМ PDCCH Российский патент 2018 года по МПК H04J11/00 

Описание патента на изобретение RU2660473C1

Область техники, к которой относится изобретение

Варианты осуществления настоящего изобретения, в общем, относятся к области техники выделения ресурсов в сетях проекта партнерства третьего поколения (3GPP). В частности, в вариантах осуществления представлено выделение ресурсов восходящего канала передачи, когда по сети 3GPP передают сигналы нисходящего канала передачи, как по физическому каналу управления нисходящим каналом передачи (PDCCH), так и по улучшенному физическому каналу управления нисходящего канала передачи (ePDCCH).

Уровень техники

Представленное здесь описание предшествующего уровня техники предназначено для общего представления контекста раскрытия. Работа упомянутых в настоящее время авторов изобретения, в той степени, как она описана в разделе предшествующий уровень техники, а также аспекты описания, которые не могут быть по-другому квалифицированы, как предшествующий уровень техники во время подачи, ни в явном, ни в не явном раскрытом виде не приняты, как предшествующий уровень техники в отношении настоящего раскрытия. Если только другое не будет обозначено здесь, подходы, описанные в этом разделе, не являются предшествующим уровнем техники в отношении формулы изобретения настоящего раскрытия и не допускаются, как предшествующий уровень при включении в этот раздел.

В сети 3GPP используется физический канал управления восходящего канала передачи (PUCCH), для передачи информации управления восходящего канала передачи (UCI) из оборудования пользователя (UE) в eNodeB 3GPP (eNB (улучшенная базовая станция)). Пример информации UCI представляет собой сигнал подтверждения в процессе гибридного ARQ (HARQ). Как правило, ресурсы PUCCH выделяют динамически для мобильной станции на основе самого низкого индекса элемента управления несущей (CCE) сигнала, передаваемого по PDCCH из eNB, используя один или больше CCE. Поскольку передача PDCCH является уникальной для заданного UE, использование индекса CCE могло бы привести к назначению для UE уникального ресурса восходящего канала передачи по PUCCH.

Однако ePDCCH, использующий один или больше улучшенных элементов управления несущей (eCCE), в последнее время был введен в спецификации 3GPP. Ресурс восходящего канала передачи PUCCH может быть основан на самом низком индексе eCCE для одного или больше eCCE, используемых для передачи в ePDCCH. В определенных случаях самый низкий индекс CCE и самый низкий индекс eCCE могут быть одинаковыми. В этих случаях ресурс восходящего канала передачи, выделенный для первого UE с использованием самого низкого индекса CCE PDCCH, может быть таким же, как и ресурс восходящего канала передачи, выделенный для второго UE с использованием самого низкого индекса eCCE ePDCCH, в результате чего происходит коллизия выделения ресурсов.

Краткое описание чертежей

Варианты осуществления будут более понятны из следующего подробного описания, которое следует рассматривать совместно с приложенными чертежами. Для того, чтобы способствовать описанию, одинаковыми номерами ссылочных позиций обозначены одинаковые структурные элементы. Варианты осуществления иллюстрируются на приложенных чертежей в качестве примера, а не для ограничения.

На фиг. 1 схематично иллюстрируется пример высокого уровня системы сети, содержащей UE и eNB, в соответствии с различными вариантами осуществления.

На фиг. 2 иллюстрируется примерный индекс ресурса восходящего канала передачи, в соответствии с различными вариантами осуществления.

На фиг. 3 иллюстрируется примерное значение смещения ресурса восходящего канала передачи, в соответствии с различными вариантами осуществления.

На фиг. 4 иллюстрируются другие примерные значения смещения ресурса восходящего канала передачи, в соответствии с различными вариантами осуществления.

На фиг. 5 иллюстрируются другие примерные значения смещения ресурса восходящего канала передачи, в соответствии с различными вариантами осуществления.

На фиг. 6 схематично иллюстрируется примерная система, которая может использоваться для выполнения на практике различных вариантов осуществления, описанных здесь.

Подробное описание изобретения

Устройства, способы и накопители информации описаны здесь для выделения ресурсов восходящего канала передачи. В некоторых вариантах осуществления ресурсы восходящего канала передачи, относящиеся к CGE, и информация, принятая при передаче по PDCCH, могут быть выделены в соответствии с первым набором значений. Ресурсы восходящего канала передачи, относящиеся к eCCE, и информация, принятая при передаче по ePDCCH, могут быть выделены в соответствии с аналогичным набором значений, с добавлением значений смещения. В некоторых вариантах осуществления, например, когда UE используют разнос при передаче для PUCCH, может быть желательно устанавливать четные значения смещения. В некоторых вариантах осуществления значения смещения могут быть отрицательными. В некоторых вариантах осуществления значения смещения могут быть специальными сигналами по RRC или могут диктоваться антенными портами, которые ассоциированы с передачей ePDCCH. В некоторых вариантах осуществления выделение ресурсов может быть основано, по меньшей мере, частично, на начальном значении смещения.

В следующем подробном описании сделана ссылка на приложенные чертежи, которые формируют часть, где одинаковыми номерами ссылочных позиций обозначены одинаковые детали на всех чертежах, которые представлены в качестве иллюстративных вариантов осуществления, которые могут быть выполнены на практике. Следует понимать, что могут использоваться другие варианты осуществления, и структурные или логические изменения могут быть произведены без выхода за пределы объема настоящего раскрытия. Поэтому следующее подробное описание не следует рассматривать в ограничительном смысле, и объем вариантов осуществления определен приложенной формулой изобретения и ее эквивалентами.

Различные операции могут быть описаны, как множество дискретных действий или операций, в свою очередь, с таким подходом, который является наиболее полезным для понимания заявленного предмета изобретения. Однако порядок описания не следует рассматривать, как подразумевающий, что эти операции обязательно зависят от этого порядка. В частности, эти операции могут быть выполнены не в порядке представления. Описанные операции могут быть выполнены в другом порядке, чем описанный вариант осуществления. Различные дополнительные операции могут быть выполнены дополнительно, и/или описанные операции могут быть исключены в дополнительных вариантах осуществления.

С целью настоящего раскрытия, фразы “A и/или B” и “A или B” означают (A), (B) или (A и B). С целью настоящего раскрытия, фраза “A, B и/или C” означает (A), (B), (C), (A и B), (A и C), (B и C) или (A, B и C).

В описании могут использоваться фразы “в варианте осуществления” или “в вариантах осуществления” каждая из которых может относиться к одному или больше таким же или другим вариантам осуществления. Кроме того, термины "содержащий", "включающий в себя", "имеющий" и т.п., использующиеся в отношении вариантов осуществления настоящего раскрытия, являются синонимами.

На фиг. 1 схематично иллюстрируется сеть 100 беспроводной передачи данных в соответствии с различными вариантами осуществления. Сеть 100 беспроводной передачи данных (ниже “сеть 100”) может представлять собой сеть 3 доступа сети LTE GPP, такую как развернутая универсальная наземная сеть радиодоступа, e-UTRAN). Сеть 100 может включать в себя eNB 105, выполненный с возможностью беспроводного обмена данными с UE 110.

Как показано на фиг. 1, UE 110 может включать в себя модуль 120 приемопередатчика. Модуль 120 приемопередатчика может быть дополнительно соединен с одной или больше из множества антенн 125 UE 110 для обеспечения беспроводного обмена данными с другими компонентами сети 100, например, eNB 105. Антенны 125 могут быть подключены к усилителю 130 мощности, который может представлять собой компонент модуля 120 приемопередатчика, как показано на фиг. 1, или может представлять собой отдельный компонент UE 110. В одном варианте осуществления усилитель 130 мощности предоставляет мощность для всех передач через антенны 125. В других вариантах осуществления может использоваться множество усилителей мощности в UE 110. Использование множества антенн 125 может обеспечить возможность для UE 110 использовать технологии разноса при передаче, такие как пространственный ортогональный разнос ресурса при передаче (SORTD). В определенных вариантах осуществления модуль 120 приемопередатчика может содержать как передающую, так и приемную схемы. В других вариантах осуществления модуль 120 приемопередатчика может быть заменен передающей схемой и приемной схемой, которые выполнены отдельными друг от друга (не показаны). В других вариантах осуществления модуль 120 приемопередатчика может быть подключен к схеме обработке, выполненной с возможностью изменения обработки или преобразования сигналов, или данных, принятых из или переданных в модуль 120 приемопередатчика (не показан).

На фиг. 2 показаны примеры CGE/eCCE индексов 200. Примерные индексы включают в себя самый низкий индекс #m и последовательно повышающиеся индексы #m+1, #m+2... #m+7. Как описано выше, самый низкий индекс CCE передачи PDCCH может, в некоторых случаях, быть таким же, как и самый низкий индекс eCCE при передаче ePDCCH. Например, самый низкий индекс CCE и самый низкий индекс eCCE могут быть одинаковыми, например, они оба используют индекс #m+2. Если передачи PUCCH первого UE и передачи PUCCH второго UE были запланированы, используя индекс CCE/eCCE #m+2, передачи PUCCH могут вступать в конфликт из-за использования одинаковых индексов CCE/eCCE.

Однако, конфликтную передачу можно исключить, если используется значение смещения для динамического выделения ресурсов для ресурсов восходящего канала передачи, используя eCCE. В некоторых вариантах осуществления значения смещения могут быть сконфигурированы объектом управления радиоресурсом (RRC) сети 100, однако другие объекты могут конфигурировать значения смещения в других вариантах осуществления. В некоторых вариантах осуществления значение смещения может представлять собой индикатор ресурса A/N (АRI). В других вариантах осуществления значение смещения может относиться к антенному порту, используемому eNB 105, для передачи данных в UE 110 по ePDCCH.

В качестве примера, используя значение смещения, если UE в сценарии дуплексного разделения частоты (FDD) использует разнос при передаче для PUCCH, такой как SORTD, тогда ресурсы PUCCH UE могут быть выделены, используя индекс CCE в соответствии со следующей формулой: для антенных портов 0 и 1, соответственно, где представляет собой ресурс PUCCH для порта 0, представляет собой ресурс PUCCH для порта 1, представляет собой индекс CCE, и представляет собой заранее сконфигурированное значение. При объединении несущих FDD, используя формат 1b PUCCH с выбором канала, ресурс PUCCH может быть выделен в соответствии с формулой , и другой ресурс PUCCH может быть выделен в соответствии с формулой .

Для сценария дуплексной передачи с временным разделением (TDD), ресурсы для антенных портов 0 и 1 могут быть определены по формулам и , соответственно, где значение value представляет собой значение, ассоциированное с одним или больше конкретными подфреймами, значение, передаваемое по сигналам, физический совместно используемый канал нисходящего канала передачи, или значение полустабильного планирования (SPS), как описано, например, в технической спецификации 3GPP 36.213 v 10.5.0 (2012-03).

В отличие от этого, ресурсы PUCCH UE в сценарии FDD могут быть выделены с использованием eCCE, в соответствии с формулами , и для антенных портов 0 и 1, соответственно, где представляет собой начальное смещение, специфичное для UE, для ресурса PUCCH, для набора k ePDCCH. В определенных вариантах осуществления может присутствовать 2 набора ePDCCH, таким образом, k может быть равно 0 или 1, хотя в других вариантах осуществления может использоваться большее или меньшее количество наборов ePDCCH, или k может иметь некоторое другое значение для заданного набора ePDCCH. Кроме того, ресурсы PUCCH UE в сценарии TDD могут быть выделены с использованием eCCE, в соответствии с формулами для антенного порта 0 и для антенного порта 1.

В некоторых вариантах осуществления noffset может представлять собой значение смещения, которое передают в UE через информацию управления нисходящим каналом передачи (DCI), передаваемую по PDCCH или ePDCCH. Как отмечено выше, в некоторых вариантах осуществления noffset может представлять собой АRI. В качестве альтернативы, значение смещения noffset может представлять собой смещение kp, специфичное для антенны, ассоциированное с антенным портом p, где p представляет собой антенный порт, выделенный для первого CCE соответствующего ePDCCH. В вариантах осуществления, в которых используется распределенный ePDCCH, kp может быть равно нулю, когда p равно 107 или 109. В вариантах осуществления, в которых используется локализованный ePDCCH, kp может быть равно p - 107, когда p равно 107, 108, 109 или 110. В этих вариантах осуществления noffset может быть равен 2·m·kp, где m представляет собой целое число. В некоторых вариантах осуществления m может быть равным 1 и, поэтому noffset =2 - kp.

В других вариантах осуществления, где используется смещение kp, специфичное для антенны, noffset может быть равным kp, и выделение ресурсов FDD может затем быть представлено формулами и для антенных портов 0 и 1, соответственно, где представляет начальное смещение, специфичное для UE, для ресурса PUCCH, для набора k ePDCCH, как описано выше. Выделение ресурсов TDD может аналогично представлено формулами и , для антенных портов 0 и 1, соответственно.

В некоторых вариантах осуществления может использоваться комбинация значений noffset, например, передаваемое в виде сигналов значение noffset в DCI, ассоциированной с АRI, и значение noffset, ассоциированное со специфичным для антенны значением смещения, таким как kp. Для облегчения понимания следующего примера, noffset, ассоциированный со значением передаваемого сигнала DCI, такого как АRI, будет называться nARI. noffset, ассоциированный с антенным портом, будет называться nantenna. Следует понимать, что nantenna может быть равным таким значениям, как kp или значение кратное kp, такому как 2kp или 2mkp, как описано выше.

В качестве примера, для локализованной передачи ePDCCH, ресурсы восходящего канала передачи в сценарии FDD могут быть выделены в соответствии с формулами и для антенных портов 0 и 1, соответственно. Для распределенной передачи ePDCCH ресурсы восходящего канала передачи для сценария FDD могут быть выделены в соответствии с и для антенных портов 0 и 1, соответственно.

Для локализованной передачи ePDCCH ресурсы восходящего канала передачи в сценарии TDD могут быть выделены в соответствии с формулами и для антенных портов 0 и 1, соответственно. Для распределенной передачи ePDCCH ресурсы восходящего канала передачи в сценарии TDD могут быть выделены, в соответствии с формулами и для антенных портов 0 и 1, соответственно.

В определенных вариантах осуществления может быть введена конфигурация RRC для обозначения начального смещения для динамического выделения ресурсов. В этом варианте осуществления может заменить в представленных выше уравнениях для выделения ресурсов TDD и FDD.

На фиг. 3 представлены примеры значений 300 noffset, которые могут быть переданы, как сигналы, в различных вариантах осуществления. Как описано выше, значения noffset могут быть переданы, как сигналы, через DCI, в ePDCCH. В некоторых вариантах осуществления представленные выше значения noffset могут представлять собой значения ARI, описанные выше. Примерные значения 300 noffeet соответствуют набору значений 305, передаваемые, как сигналы, по DCI.

На фиг. 3, первый набор значений 310 noffset может соответствовать набору значений 305, передаваемой, как сигналы, DCI в первом варианте осуществления. Например, значениям noffset, равным 0, 2, 4 или 6, могут соответствовать сигналы DCI 00, 01, 10 или 11, соответственно. Второй набор значений 315 noffset может соответствовать набору значений 305, передаваемым с DCI во втором варианте осуществления. Например, noffset -2, 0, 2 или 4 может соответствовать сигналу DCI 00, 01, 10 или 11, соответственно. Третий набор значений 320 noffset может соответствовать набору 305 значений, передаваемых, как сигналы с DCI в третьем варианте осуществления. Например, noffset -4,-2, 0 или 2 может соответствовать сигналу DCI 00, 01, 10 или 11, соответственно. Четвертый набор значений 325 noffset, может соответствовать набору значений 305, передаваемых, как сигналы по DCI в четвертом варианте осуществления. Например, noffset -6,-4,-2 или 0 может соответствовать сигналу DCI 00, 01, 10 или 11, соответственно. Пятый набор значений 330 noffset может соответствовать набору значений 305, передаваемых, как сигналы с DCI в пятом варианте осуществления. Например, noffset 0, 2, 6, или 8 может соответствовать сигналу DCI 00, 01, 10 или 11, соответственно.

Может быть желательным, чтобы noffset имело четное значение, таким образом, чтобы планировщик ресурса мог рассматривать два разных ресурса для двух антенных портов при использовании конфигурации с разносом при передаче, такие как SORTD или для объединения несущих FDD, используя формат 1b PUCCH с выбором канала для обеспечения максимальной вероятности исключения коллизий. Как показано выше, выделение ресурсов восходящего канала передачи между портами 0 и 1, или выделение ресурсов восходящего канала передачи для формата 1b PUCCH с выбором канала можно последовательно увеличить на значение 1. Другими словами, если для порта 0 используется ресурс восходящего канала передачи, соответствующий #m+-2, тогда для порта 1 можно использовать ресурс восходящего канала передачи, соответствующий #m+3. В этом примере выделение ресурсов восходящего канала передачи, в соответствии с eCCE, может потребоваться последовательно увеличивать на четное значение таким образом, чтобы выделение ресурсов восходящего канала передачи порта 0 на основе eCCE не входило в конфликт с выделением ресурсов восходящего канала передачи порта 1 на основе CCE. Например, как показано на фиг. 2, если самый низкий индекс CCE представляет собой #m+2, и самый низкий индекс eCCE представляет собой #m+4, тогда значение noffset -1 может привести к возникновению коллизии, поскольку, как выделение ресурсов восходящего канала передачи, полученное с использованием CCE для порта 1, так и выделение ресурсов восходящего канала передачи, полученное используя eCCE для порта 0, могут указывать на ресурс восходящего канала передачи, соответствующий #m+3. В качестве альтернативы, если самый низкий индекс CCE равен #m+2, и самый низкий индекс eCCE равен #m+2, то значение noffset, равное 1, может привести коллизии, поскольку оба выделение ресурсов восходящего канала передачи, полученное с использованием CCE для порта 1, и выделение ресурсов восходящего канала передачи, полученное с использованием eCCE для порта 0, могут указывать на ресурс восходящего канала передачи, соответствующий #m+3.

Как следует понимать, было бы желательно, в некоторых вариантах осуществления, чтобы, по меньшей мере, одно из возможных значений noffset было равно 0, чтобы обеспечить нейтрализацию значения noffset в будущих версиях стандартов, делая значение noffset "нежелательным или устаревшим". Однако, другие наборы значений noffset, могут не включать в себя значение noffset, равное 0. В некоторых вариантах осуществления было бы желательно, чтобы, по меньшей мере, одно значение было отрицательным, для учета большого уровня объединения для предыдущих PDCCH, то есть, множества последовательных CCE, используемых для передачи предыдущих PDCCH, хотя другие варианты осуществления могут иметь все положительные (или все отрицательные) значения noffset.

Наконец, значения nosset, в наборах 310, 315, 320, 325 и 330, являются просто примерами и могут быть желательными большие или меньшие значения.

Использование большего или меньшего количества битов для обозначения значения noffset может быть желательным для обеспечения большей или меньшей степени свободы при передаче, используя сигналы со значениями noffset. Например, при использовании 2 битов обеспечивается 4 степени свободы, однако, при использовании 3 битов может обеспечиваться 8 степеней свободы, и при использовании x битов может обеспечиваться 2x степеней свободы. В некоторых вариантах осуществления было быть желательным, с целью экономии энергии или уменьшения передаваемого количества сигналов, использовать только один бит для передачи в виде сигналов значения noffset. В общем, биты DCI для noffset могут быть определены путем добавления битов к существующему полю DCI,или путем повторного использования существующего поля в DCI.

Например, на фиг. 4 представлены примерные значения 400 noffset для вариантов осуществления, где используется только один бит в наборе значений 405, передаваемых, как сигналы, по DCI. Аналогично фиг. 3, описываемые значения noffset могут представлять собой значения АRI, описанные выше. Например, шестой набор значений 410 noffset может соответствовать набору значений 405, передаваемых сигналами по DCI в шестом варианте осуществления. Например, noffset -2 или 0 может соответствовать сигналу DCI 0 или 1, соответственно. Седьмой набор значений 415 noffset может соответствовать набору значений 405, передаваемых, как сигналы по DCI, в седьмом варианте осуществления. Например, noffset 0 или 2 может соответствовать сигналу DCI 0 или 1, соответственно.

В некоторых вариантах осуществления значения смещения могут содержать комбинацию четных и нечетных значений. На фиг. 5 представлен пример значений 500 noffset для вариантов осуществления, содержащих комбинацию четных и нечетных значений. Аналогично фиг. 3 и 4, описанные значения noffset могут представлять собой значения ARI, описанные выше. На фиг. 5, восьмой набор значений 510 noffset может соответствовать набору значений 505, передаваемых, как сигналы с DCI в восьмом варианте осуществления. Например, noffset -4, -2, 0 или 1 могут соответствовать сигналам DCI 00, 01, 10 или 11, соответственно. Девятый набор значений 515 noffset может соответствовать набору значений 505, передаваемых, как сигналы с DCI в девятом варианте осуществления. Например, noffset -2, 0, 1 или 2 могут соответствовать сигналам DCI 00, 01, 10 или 11, соответственно. Десятый набор значений 520 может соответствовать набору значений 505, передаваемых как сигналы с DCI в десятом варианте осуществления. Например, noffset -2,-1,0 или 2 могут соответствовать сигналам DCI 00, 01, 10 или 11, соответственно.

Использование комбинации нечетных значений и четных значений может быть желательным по нескольким причинам. Во-первых, значение масштабирования может применяться для обеспечения максимальной гибкости значений noffset. Например, если разнос при передаче, такой как SORTD, не используется при передаче PUCCH, тогда нечетное значение noffset может быть приемлемым. Однако, если PUCCH в последующем будет передан с использованием SORTD, тогда может быть желательным четное значение noffset. Комбинация нечетных и четных значений может обеспечить возможность выполнения обоих сценариев, поскольку может применяться коэффициент масштабирования, такой как 2, таким образом, что нечетные значения становятся четными значениями, заданными для передачи SORTD. В качестве примера, и обращаясь к значению 515 в девятом варианте осуществления, использование коэффициента масштабирования, такого как 2, может сделать значения (-2, 0, 1, 2) четными значениям (-4, 0, 2, 4). В некоторых вариантах осуществления RRC может конфигурировать коэффициент масштабирования, в то время как в других вариантах осуществления eNB может конфигурировать коэффициент масштабирования для использования UE для передачи PUCCH.

В некоторых вариантах осуществления, где ePDCCH используется в отдельном новом типе несущей (NCT), например, как PCell, описанные выше варианты осуществления могут быть изменены. Например, значение noffset может быть поддерживаться с учетом возможных будущих расширений, таких как множество входов и множество выходов для множества пользователей (MU-MIMO) или при скоординированной многоточечной передаче (CoMP). В качестве альтернативы, значение noffset может быть эффективно удалено, например, когда всегда устанавливают значение noffset, равное 0. В этом случае значение noffset может использоваться, как виртуальное поле проверки циклической избыточности (CRC). В других вариантах осуществления значение noffset может быть полностью удалено из DCI.

Как описано выше, в некоторых вариантах осуществления, значения начального смещения для динамического выделения ресурсов могут быть предоставлены параметрами RRC, обозначенные сигналами RRC. В этих вариантах осуществления, по меньшей мере, одно значение noffset может содержать, по меньшей мере, один из параметров RRC. Например, при обозначении (где k=0, 1), как начальное смещение параметра RRC, специфичного для UE для набора k ePDCCH, значение noffset может содержать, по меньшей мере, одно из и/или .

Специфичные для UE начальные значения смещения могут помочь эффективно использовать заданную область ресурса PUCCH, используя параметры RRC в noffset, для смещения параметров PUCCH таким образом, что сигналы физического совместно используемого канала восходящего канала передачи (PUSCH) также могут быть переданы в этой области PUCCH в зависимости от планирования eNB.

В этих вариантах осуществления значения noffset могут представлять собой 0, 2, или . В этих вариантах осуществления параметры, поэтому, могут представлять собой гибридную версию четного количества значений смещения и значений смещения ePDCCH, как описано выше. Другие варианты для noffset могут включать в себя 0, N, + M1 или + M2, где N, M1 и M2 представляют собой целочисленные значения. В этом примере N, M1 и M2 каждое может быть равно 1 или -1. В некоторых вариантах осуществления все три переменные могут быть равны друг другу, и в других вариантах осуществления, по меньшей мере, одна из переменных может иметь значение, которое отличается от других переменных. В других вариантах осуществления N может быть равно 1 или -1, и M1 и/или M2 могут быть равны 0. В некоторых вариантах осуществления N, M1 и M2 могут представлять собой четное число, такое как 2, -2, или некоторое другое четное число, для исключения коллизий ресурса при использовании SORTD или при выборе канала FDD. Например, в этих вариантах осуществления noffset может быть равно 0, ±2, ±2, , , где “±A” представляет +A или -A.

В некоторые варианты осуществления, значение noffset смещения для набора k ePDCCH может быть равно 0, 2, или . В этих вариантах осуществления параметры noffset, поэтому, могут эффективно менять начальное смещение, специфичное для UE, для набора k ePDCCH, на переданное в виде сигналов значение noffset, например noffset, обозначенное ARI, как описано выше. В других вариантах осуществления другие значения noffset могут включать в себя 0, N, или , где N, M1 и M2 представляют собой целочисленные значения. В этом примере N, M1 и M2 каждое может быть равно 1 или -1. В некоторых вариантах осуществления все три переменные могут быть равны друг другу, и в других вариантах осуществления, по меньшей мере, одна из переменных может иметь значение, которое отличается от других переменных. В других вариантах осуществления N может быть равно 1 или -1, и M1, и/или M2 могут быть равны 0. В некоторых вариантах осуществления N, M1 и M2 могут представлять собой четные числа, такие как 2, -2, или некоторое другое четное число, для исключения коллизий ресурса при SORTD или выборе канала FDD. Например, в этих вариантах осуществления noffset может быть равно 0, ±2, , , где “±A” представляет собой +A или -A. В вариантах осуществления, где начальное смещение для второго набора ePDCCH k=l, , не сконфигурировано, значение может быть заменено специфичным для соты начальным значением смещения . В этих вариантах осуществления значения noffset могут быть тогда равны 0, N, или , где N, М1 и M2 представляют собой целочисленные значения.

Варианты осуществления настоящего раскрытия могут быть воплощены в системе, используя любые соответствующие аппаратные и/или программные средства для придания соответствующей конфигурации. На фиг. 6 схематично иллюстрируется примерная система 600, которая может использоваться для выполнения на практике различных вариантов осуществления, описанных здесь. На фиг. 6 иллюстрируется, для одного варианта осуществления, примерная система 600, имеющая один или больше процессора (процессоров) 605, модуль 610 системного управления, подключенный к, по меньшей мере, одному из процессора (процессоров) 605, системное запоминающее устройство 615, соединенное с модулем 610 системного управления, энергонезависимое запоминающее устройство (NVM)/накопитель 620, соединенное с модулем 610 системного управления, и один или больше интерфейса (интерфейсов) 625 передачи данных, соединенный с модулем 610 системного управления.

В некоторых вариантах осуществления система 600 может быть выполнена с возможностью функционирования, как UE 110, как описано здесь. В других вариантах осуществления система 600 может быть выполнена с возможностью функционирования, как eNB 105, представленный в варианте осуществления, показанном на фиг. 1, или в любом одном из других описанных вариантов осуществления. В некоторых вариантах осуществления система 600 может включать в себя один или больше считываемых компьютером носителей информации (например, системное запоминающее устройство или NVM/накопитель 620), имеющих инструкции, и один или больше процессора (например, процессоров) 605), соединенных с одним или больше считываемых компьютером носителей информации, и выполненный с возможностью исполнения инструкций для воплощения модуля для выполнения описанных здесь действий.

Модуль 610 системного управления для одного варианта осуществления может включать в себя любые соответствующие контроллеры интерфейса для обеспечения любого соответствующего интерфейса для, по меньшей мере, одного из процессора (процессоров) 605 и/или для любого соответствующего устройства или компонента, который сообщается с модулем 610 системного управления.

Модуль 610 системного управления может включать в себя модуль 630 контроллера памяти для обеспечения интерфейса для системного запоминающего устройства 615. Модуль 630 контроллера памяти может представлять собой аппаратный модуль, программный модуль и/или модуль в виде встроенного программного обеспечения.

Системное запоминающее устройство 615 можно использовать для загрузки и сохранения данных и/или инструкций, например, в систему 600. Системное запоминающее устройство 615 для одного варианта осуществления может включать в себя любое соответствующее энергозависимое запоминающее устройство, такое как, например, соответствующее DRAM. В некоторых вариантах осуществления системное запоминающее устройство 615 может включать в себя устройство с двойной скоростью передачи данных для синхронного динамического запоминающего устройства четвертого типа (DDR4 SDRAM).

Модуль 610 системного управления для одного варианта осуществления может включать в себя один или больше контроллера (контроллеров) ввода-вывода (I/O) для обеспечения интерфейса для NVM/накопителя 620 и интерфейса (интерфейсов) 625 передачи данных.

NVM/накопитель 620 можно использовать для сохранения данных и/или инструкций, например, NVM/накопитель 620 может включать в себя любое соответствующее энергонезависимое запоминающее устройство, такое как, например, запоминающее устройство флэш, и/или может включать в себя любое соответствующее энергонезависимое устройство (устройства) накопитель, такое как, например, один или больше приводов жесткого диска) (HDD), один или больше привод (приводов) на компакт-дисках (CD) и/или один или больше привода (приводов) цифрового универсального диска (DVD).

NVM/накопитель 620 может включать в себя ресурс накопителя, который физически представляет собой часть устройства, в котором установлена система 600, или доступ к нему может осуществляться, но не обязательно, как части устройства. Например, доступ к NVM/накопителю 620 можно получить через сеть, используя интерфейс (интерфейсы) 625 передачи данных.

Интерфейс (интерфейсы) 625 передачи данных может обеспечить интерфейс для системы 600 для связи через одну или больше сеть (сетей) и/или с любым другим соответствующим устройством. Система 600 может выполнять обмен данными по беспроводному каналу передачи данных с одним или больше компонентами беспроводной сети, в соответствии с любым одним или больше стандартами и/или протоколами беспроводной сети. Например, интерфейс (интерфейсы) 625 передачи данных может быть соединен с модулем 120 приемопередатчика, который был описан выше со ссылкой на фиг. 1.

В одном варианте осуществления, по меньшей мере, один из процессора (процессоров) 605 может быть упакован вместе с логической схемой для одного или больше контроллера (контроллеров) модуля 610 системного управления, например, модуля 630 контроллера памяти. Для одного варианта осуществления, по меньшей мере, один из процессора (процессоров) 605 может быть упакован вместе с логической схемой для одного или больше контроллеров модуля 610 системного управления для формирования системы в пакете (SiP). В одном варианте осуществления, по меньшей мере, один из процессора (процессоров) 605 может быть интегрирован на одной и той микросхеме с логической схемой для одного или больше контроллеров модуля 610 системного управления. В одном варианте осуществления, по меньшей мере, один из процессора (процессоров) 605 может быть интегрирован на одном и том же кристалле с логической схемой для одного или больше контроллера (контроллеров) модуля 610 системного управления, для формирования системы на кристалле (SoC).

В различных вариантах осуществления система 600 может представлять собой, но не ограничена этим, сервер, рабочую станцию, настольное вычислительное устройство или мобильное вычислительное устройство (например, переносное вычислительное устройство, портативное вычислительное устройство, планшет, нетбук и т.д.). В разных вариантах осуществления система 600 может иметь большее или меньшее количество компонентов и/или разные архитектуры. Например, в некоторых вариантах осуществления, система 600 включает в себя одну или больше из фотокамеры, клавиатуры, экрана жидкокристаллического дисплея (LCD) (включая в себя дисплей с сенсорным экраном), порта энергонезависимого запоминающего устройства, множества антенн, графического процессора, специализированной интегральной схемы (ASIC) и громкоговорителей.

Способы и устройства предусмотрены здесь для динамического выделения ресурсов канала управления по восходящему каналу передачи. В некоторых вариантах осуществления схема UE может быть предназначена для приема индикации значения смещения ePDCCH. Схема UE может дополнительно принимать один или больше eCCE из ePDCCH. Схема UE может затем выбирать, на основе индикации значения смещения, величину смещения из таблицы, содержащей множество сохраненных значений смещения, множество сохраненных значений смещения, содержащих такие значения смещения, как -2, -1, 0 и 2. Затем схема UE может определять выделение ресурса восходящего канала передачи PUCCH на основе, по меньшей мере, частично, индекса первого eCCE из одного или больше eCCE и выбранного значения смещения. В некоторых вариантах осуществления индикация значения смещения может быть принята в информации управления нисходящим каналом передачи, передаваемой по ePDCCH, в то время, как в других вариантах осуществления значение смещения может быть основано, по меньшей мере, частично, на антенном порту, ассоциированном с ePDCCH. По меньшей мере, в одном варианте осуществления антенный порт может быть выделен для первого eCCE. В некоторых вариантах осуществления выделение ресурса восходящего канала передачи может быть основано, по меньшей мере, частично, на специфичном для UE начальном значении смещения для набора ePDCCH. Кроме того, значение смещения может быть основано на специфичном для UE начальном значении смещения или специфичном для соты начальном значении смещения. В некоторых вариантах осуществления, по меньшей мере, одно из множества значений смещения может быть четным или отрицательным, и коэффициент масштабирования может использоваться для умножения значения смещения. Кроме того, индекс первого eCCE может быть меньше, чем индекс других eCCE среди одного или больше eCCE. В некоторых вариантах осуществления, схема UE может быть соединена с графическим процессором.

Некоторые варианты осуществления могут дополнительно включать в себя UE со схемами приема и обработки для выполнения функций, аналогичных вариантам осуществления, описанным выше. В частности, схема приема может отслеживать ePDCCH со значением смещения 2, и получать один или больше eCCE в ePDCCH. Кроме того, схема приема может быть выполнена с возможностью получения одного или больше CCE в PDCCH, и схема обработки может быть выполнена с возможностью определения первого выделения ресурса восходящего канала передачи PUCCH, на основе, по меньшей мере, частично, индекса первого eCCE одного или больше eCCE и значения смещения, и определения второго выделения ресурса восходящего канала передачи PUCCH на основе, по меньшей мере, частично, индекса первого CCE среди одного или больше CCE. В некоторых вариантах осуществления первое выделение и второе выделение могут отличаться друг от друга. В некоторых вариантах осуществления значение смещения может быть передано, как сигнал в информации управления нисходящего канала передачи в ePDCCH. В некоторых вариантах осуществления схема обработки может быть выполнена с возможностью определения первого выделения на основе, по меньшей мере, частично, результата значения смещения, умноженного на коэффициент масштабирования. В некоторых вариантах осуществления индекс первого eCCE может быть меньше, чем индекс других eCCE одного или больше eCCE. В некоторых вариантах осуществления схема обработки может выполнена с возможностью определения первого выделения ресурса восходящего канала передачи данных, на основе, по меньшей мере, частично, начального значения смещения для набора ePDCCH, выбранного из множества наборов ePDCCH. В некоторых вариантах осуществления начальное значение смещения может представлять собой начальное значение смещения, специфичное для UE. В некоторых вариантах осуществления значение смещения может быть основано, по меньшей мере, частично, на начальном значении смещения или на начальном значении смещения, специфичном для соты. В некоторых вариантах осуществления значение смещения 2 может быть выбрано из набора, состоящего из -2, -1, 0 и 2.

Другие варианты осуществления могут включать в себя UE, содержащее приемник, для приема значения смещения, равного 2, и один или больше eCCE в ePDCCH. UE может дополнительно содержать процессор, соединенный с приемником, для выделения ресурса восходящего канала передачи PUCCH, на основе, по меньшей мере, частично, индекса первого eCCE из одного или больше eCCE и значения смещения. UE также может содержать передатчик, выполненный с возможностью передачи сигнала по физическому каналу управления восходящего канала передачи, используя первый ресурс восходящего канала передачи. В вариантах осуществления приемник может принимать значение смещения в информации управления нисходящего канала передачи ePDCCH. В вариантах осуществления при обработке может выделяться ресурс восходящего канала передачи, на основе, по меньшей мере, частично, значения смещения, умноженного на коэффициент масштабирования. В вариантах осуществления индекс первого eCCE меньше, чем индекс других eCCE или одного или больше eCCE. В вариантах осуществления процессор может также выделять ресурс восходящего канала передачи, на основе, по меньшей мере, части начального значении смещения для набора ePDCCH. В вариантах осуществления, начальное значение смещения является специфичным для UE. В вариантах осуществления значение смещения основано, по меньшей мере, частично, на начальном значении смещения или на начальном значении смещения, специфичном для соты. В вариантах осуществления значение смещения, равное 2, выбирают из набора, состоящего из -2,-1, 0 и 2. В вариантах осуществления дисплей может быть соединен с процессором.

Хотя некоторые варианты осуществления были представлены и описаны здесь с целью описания, данная заявка предназначена для охвата любых адаптаций или вариаций описанных здесь вариантов осуществления. Поэтому, очевидно, предполагается, что варианты осуществления, описанные здесь, могут быть ограничены только формулой изобретения.

Случай, когда в описании указано “a” или “первый” элемент, или его эквивалент, такое раскрытие включает в себя один или больше таких элементов, и при этом не требуются и не исключаются два или больше таких элемента. Кроме того, индексы порядка (например, первый, второй или третий) для идентифицированных элементов используются для различения между элементами, и не обозначают или не подразумевают требуемое или ограниченное количество таких элементов, и при этом они не обозначают конкретное положение, или порядок таких элементов, если только другое не будет, в частности, установлено.

Похожие патенты RU2660473C1

название год авторы номер документа
ВЫДЕЛЕНИЕ РЕСУРСОВ PUCCH С УЛУЧШЕННЫМ PDCCH 2013
  • Хан Сонхи
  • Чжу Юань
  • Фу Цзун-Каэ
RU2578673C1
ВОСХОДЯЩАЯ ГИБРИДНАЯ СИГНАЛИЗАЦИЯ ПОДТВЕРЖДЕНИЙ ПРИЕМА В СИСТЕМАХ БЕСПРОВОДНОЙ СВЯЗИ 2013
  • Нам Янг-Хан
  • Хан Дзин-Киу
RU2638745C2
ВЫДЕЛЕНИЕ РЕСУРСОВ PUCCH С УЛУЧШЕННЫМ PDCCH 2013
  • Хан Сонхи
  • Чжу Юань
  • Фу Цзун-Каэ
RU2630428C1
СПОСОБ ДЛЯ ПРЕДОСТАВЛЕНИЯ УСОВЕРШЕНСТВОВАННОГО ФИЗИЧЕСКОГО КАНАЛА УПРАВЛЕНИЯ НИСХОДЯЩЕЙ ЛИНИИ СВЯЗИ В СИСТЕМЕ БЕСПРОВОДНОЙ СВЯЗИ И БЕСПРОВОДНОЙ ПРИЕМО-ПЕРЕДАЮЩИЙ МОДУЛЬ 2013
  • Ли Моон-Ил
  • Коо Чангсоо
  • Шин Сунг-Хиук
  • Стерн-Берковиц Джанет А.
  • Рудольф Мариан
  • Си Фыньцзюнь
  • Кини Анантх
  • Хоссейниан Сейед Мохсен
  • Маринер Пол
RU2628011C2
ИНДЕКСИРОВАНИЕ ЭЛЕМЕНТОВ РАСШИРЕННОГО КАНАЛА УПРАВЛЕНИЯ ДЛЯ ПРОСТРАНСТВА ПОИСКА ФИЗИЧЕСКОГО НИСХОДЯЩЕГО КАНАЛА УПРАВЛЕНИЯ 2013
  • Чэнь Сяоган
  • Чжу Юань
  • Фу Цзун-Каэ
  • Хан Сонхи
  • Ли Цинхуа
RU2652093C1
ИНДЕКСИРОВАНИЕ ЭЛЕМЕНТОВ РАСШИРЕННОГО КАНАЛА УПРАВЛЕНИЯ ДЛЯ ПРОСТРАНСТВА ПОИСКА ФИЗИЧЕСКОГО НИСХОДЯЩЕГО КАНАЛА УПРАВЛЕНИЯ 2013
  • Чэнь Сяоган
  • Чжу Юань
  • Фу Цзун-Каэ
  • Хан Сонхи
  • Ли Цинхуа
RU2604875C2
СПОСОБ И УСТРОЙСТВО ОТОБРАЖЕНИЯ РЕСУРСОВ В СИСТЕМЕ OFDM 2011
  • Дзи Хиоунг Дзу
  • Чо Дзоон Йоунг
  • Хан Дзин Киу
RU2693577C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРИЕМА СИГНАЛА НИСХОДЯЩЕЙ ЛИНИИ СВЯЗИ В СИСТЕМЕ БЕСПРОВОДНОЙ СВЯЗИ 2013
  • Сео Инквон
  • Парк Дзонгхиун
  • Сео Ханбьюл
  • Ким Кидзун
RU2593394C1
СПОСОБ ПЕРЕДАЧИ И ПРИЕМА СИГНАЛИЗАЦИИ УПРАВЛЕНИЯ ДЛЯ ПОЛЬЗОВАТЕЛЬСКОГО ОБОРУДОВАНИЯ В СИСТЕМЕ СВЯЗИ LTE 2013
  • Сатханантхан Сатха
RU2546660C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ И ПРИЕМА УПРАВЛЯЮЩЕЙ ИНФОРМАЦИИ В СИСТЕМЕ БЕСПРОВОДНОЙ СВЯЗИ 2012
  • Шан Чэн
  • Ким Йоун-Сун
RU2596839C2

Иллюстрации к изобретению RU 2 660 473 C1

Реферат патента 2018 года ВЫДЕЛЕНИЕ РЕСУРСОВ PUCCH С УЛУЧШЕННЫМ PDCCH

Изобретение относится к области беспроводной связи, в частности к технике выделения ресурсов в сетях проекта партнерства третьего поколения (3GPP). Варианты осуществления настоящего раскрытия включают в себя способы, устройства и инструкции для передачи базовой станицей (eNodeB) в оборудовании пользователя (UE) сети 3GPP значения смещения, выбранного из множества значений смещения в информации управления нисходящим каналом передачи. eNodeB передает по улучшенному физическому каналу управления нисходящим каналом передачи (ePDCCH) индикацию значения смещения, выбираемого из множества значений смещения, содержащего значения смещения, как -2, -1, 0 и 2, передает, по ePDCCH, один или больше улучшенные элементы управления каналом (eCCE) в ePDCCH; и идентифицирует сигнал в ресурсе восходящего канала передачи физического канала управления восходящего канала передачи (PUCCH), выделенного на основе, по меньшей мере, частично, индекса первого eCCE из одного или больше eCCE и выбранного значения смещения. 3 н. и 17 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 660 473 C1

1. Устройство пользователя (UE), содержащее:

первую схему, выполненную с возможностью идентифицировать ресурс восходящей линии связи на основании значения смещения, равного 2, и одного или более улучшенных элементов канала управления (eCCEs) улучшенного физического канала управления нисходящей линии связи (ePDCCH); и

вторую схему, соединенную с первой схемой, причем вторая схема выполнена с возможностью передавать сигнал восходящей линии связи на ресурсе восходящей линии связи.

2. UE по п. 1, в котором ресурс восходящей линии связи является ресурсом восходящей линии связи физического канала управления восходящей линии связи (PUCCH).

3. UE по п. 1 или 2 дополнительно содержит третью схему, соединенную с первой схемой, причем третья схема выполнена с возможностью принимать по ePDCCH индикацию значения смещения.

4. UE по п. 3, в котором третья схема выполнена с возможностью принимать индикацию значения смещения в управляющей информации нисходящей линии связи, переданной по ePDCCH.

5. UE по п. 1 или 2, в котором первая схема выполнена с возможностью выделять ресурс восходящей линии связи на основании индекса первого eCCE одного или более eCCEs.

6. UE по п. 5, в котором индекс первого eCCE меньше, чем индекс других eCCEs одного или нескольких eCCEs.

7. Постоянный считываемый компьютером носитель информации, содержащий инструкции, которые побуждают устройство пользователя (UE), при выполнении инструкций одним или несколькими процессорами UE:

идентифицировать значение смещения, равное 2;

идентифицировать ресурс восходящей линии связи на основании значения

смещения и дополнительно на основании одного или более улучшенных элементов канала управления (eCCEs) улучшенного физического канала управления нисходящей линии связи (ePDCCH); и

передавать сигнал восходящей линии связи на ресурсе восходящей линии связи.

8. Постоянный считываемый компьютером носитель информации по п. 7, в котором ресурс восходящей линии связи является ресурсом восходящей линии связи физического канала управления восходящей линии связи (PUCCH).

9. Постоянный считываемый компьютером носитель информации по п. 7 или 8, в котором инструкции дополнительно вызывают UE идентифицировать, на основании сигнала, принятого по ePDCCH, индикацию значения смещения.

10. Постоянный считываемый компьютером носитель информации по п. 9, в котором инструкции дополнительно вызывают UE идентифицировать индикацию значения смещения в управляющей информации нисходящей линии связи сигнала, принятого по ePDCCH.

11. Постоянный считываемый компьютером носитель информации по п. 9, в котором инструкции дополнительно вызывают UE выбирать на основании индикации значения смещения, значение смещения, равное 2, из множества хранимых значений смещения.

12. Постоянный считываемый компьютером носитель информации по п. 7 или 8, в котором инструкции дополнительно вызывают UE выделять ресурс восходящей линии связи на основании индекса первого eCCE одного или более eCCEs.

13. Постоянный считываемый компьютером носитель информации по п. 12, в котором индекс первого eCCE меньше, чем индекс других eCCEs одного или более eCCEs.

14. Усовершенствованный узел В (eNB), содержащий:

первую схему, выполненную с возможностью принимать передачу восходящей линии связи канала восходящей линии связи; и

вторую схему, соединенную с первой схемой, причем вторая схема выполнена с возможностью идентифицировать сигнал на ресурсе восходящей линии связи передачи восходящей линии связи, на основании улучшенного элемента канала управления (eCCE) канала нисходящей линии связи и значении смещения, равного 2.

15. eNB по п. 14, в котором канал восходящей линии связи является физическим каналом управления восходящей линии связи (PUCCH).

16. eNB по п. 14 или 15, в котором канал нисходящей линии связи является улучшенным физическим каналом управления нисходящей линии связи (ePDCCH).

17. eNB по п. 14 или 15, дополнительно содержит третью схему, соединенную со второй схемой, причем третья схема выполнена с возможностью передавать индикацию значения смещения, равного 2.

18. eNB по п. 14 или 15, в котором значение смещения, равное 2, выбирают из множества сохраненных значений смещения.

19. eNB по п. 14 или 15, в котором ресурс восходящей линии связи передачи по восходящей линии связи выделяют на основании индекса улучшенного элемента канала управления (eCCE).

20. eNB по п. 19, в котором индекс eCCE ниже, чем индекс других eCCEs канала нисходящей линии связи.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660473C1

Samsung: HARQ-ACK PUCCH Resources in Response to ePDCCH Detections, 3GPP TSG RAN WG1 #69, R1-122259, Prague, Czech Republic, 21 - 25 May 2012
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
WO 2012064052 A3, 18.05.2012
RU 2010101679 A, 27.07.2011.

RU 2 660 473 C1

Авторы

Хан Сонхи

Чжу Юань

Фу Цзун-Каэ

Даты

2018-07-06Публикация

2017-08-28Подача