Озонатор Российский патент 2018 года по МПК C01B13/11 

Описание патента на изобретение RU2660870C2

Изобретение относится к аппаратам синтеза озона из кислорода.

Известно устройство для озонирования, содержащее подключенные к высоковольтному источнику переменного напряжения два высокоомных электрода, образующих газоразрядный промежуток с расположенными в нем на электродах диэлектрическими барьерами [1]. В этом устройстве происходит перераспределение тепловыделения. Часть общего тепловыделения выделяется в высокоомных электродах, а в газоразрядном промежутке тепловыделение становится меньше на величину тепловыделения в высокоомных электродах. В итоге нагрев озоногазовой смеси уменьшается, разложение озона падает и производительность озонатора увеличивается. Однако часть тепловыделения с высокоомных электродов через барьер снова проникает за счет теплопроводности в газоразрядный промежуток, снижая эффективность синтеза озона. Кроме этого, создание высокоомных электродов связано со значительными техническими трудностями.

Можно повысить производительность по выходу озона, если микроразряды сделать высокоомными с помощью резисторов. Однако в озонаторах с плоскими сплошными электродами это не представляется возможным.

Наиболее близким является устройство [2], содержащее два электрода, выполненные в виде полос (секций), закрепленных на обеих поверхностях диэлектрического барьера и объединенных шинами. Электроды подключены к высоковольтному источнику переменного напряжения и разнесены один относительно другого расположением полос в последовательно чередующемся порядке.

Недостатком указанного устройства, как и всех озонаторов с высокопроводящими электродами, является высокий нагрев озоносодержащего газа, приводящий к снижению производительности по выходу озона.

Техническим результатом заявляемого изобретения является повышение производительности устройства, упрощение его конструкции.

Этот технический результат достигается тем, что в озонаторе, содержащем два высокоомных электрода в виде полос (секций), закрепленных на обеих поверхностях диэлектрического барьера и разнесенных так, что полосы одного электрода расположены относительно полос другого электрода в последовательно чередующемся порядке, а каждая полоса (секция) электродов подключена к высоковольтному источнику напряжения, причем в соответствии с изобретением каждая полоса электродов подключена к источнику напряжения через резистор.

При этом полосы одного электрода могут быть расположены так, что проекции осевых продольных линий этих полос на поверхность расположения полос другого электрода совпадают с продольной линией, разделяющей расстояние между каждыми двумя полосами этого другого электрода.

На фиг. 1 изображена схема озонатора; на фиг. 2 - сечение А-А на фиг. 1; на фиг. 3 - временная форма тока микроразряда.

Схема озонатора представлена без кожуха, обеспечивающего подачу и выход озонируемого газа. Озонатор содержит диэлектрический барьер 1, на поверхности барьера закреплены полосковые электроды 2 и 3. Полосы электрода 2 разнесены относительно полос электрода 3 в последовательно чередующемся порядке. Каждая полоса электрода 2 подключена к высоковольтному источнику напряжения 6 через резисторы 4; соответственно каждая полоса электрода 3 подключена к другой полярности высоковольтного источника 6 через резисторы 5. Резисторы выбраны из условия сопротивления микроразряда 3 - 5 кОм.

Озонатор работает следующим образом. От высоковольтного источника 6 переменное напряжение подается через резисторы 4 и 5 на полосковые электроды 2 и 3. На поверхностях диэлектрического барьера образуется поверхностный лавинный разряд, в котором молекулы кислорода подвергаются интенсивной электронной бомбардировке. В результате синтезируется озон. В заявляемом устройстве, как и в прототипе [2], тепловыделение перераспределяется. В газоразрядном промежутке тепла выделяется меньше на количество тепловыделения в резисторах 4 и 5. Теплопередача от резисторов 4 и 5 обратно в газоразрядный промежуток не происходит. За счет этого производительность по озону повышается.

Это следует из дискретной структуры барьерного разряда. Барьерный разряд состоит из отдельных частичных разрядов (микроразрядов). Эффекты, связанные с производительностью и нагревом, определяются каждым микроразрядом. Согласно [3, с. 33-34], где приведены осциллограммы микроразрядного тока, видно, что микроразрядный ток состоит из двух стадий. Первая стадия - формирование тока: рост микроразрядного тока от нуля до амплитуды разрядного тока , величина переносимого заряда во время стадии формирования . И вторая стадия - завершение разряда: стадия завершения носит затухающий экспоненциальный характер. Согласно [3, с. 33-34] основная составляющая переносимого заряда приходится на стадию завершения разряда и равна Амплитуда тока в первом приближении определяется сопротивлением столба микроразряда: . Здесь Uист. - напряжение источника питания в момент действия микроразряда, rp - сопротивление столба микроразряда, - постоянная времени завершения микроразряда, где Ср - емкость микроразряда.

Основная часть тепла, выделяющегося в микроразряде (джоулевая составляющая), определяется завершающей стадией разряда:

.

При использовании в заявляемом озонаторе подключение резисторов, амплитуда тока микроразряда уменьшится, а постоянная времени τ увеличится в k раз:

, здесь rэ - сопротивление подключенного резистора.

В связи с этим переносимый заряд остается неизменным, а джоулево выделение тепла уменьшится в k раз, поэтому начальный синтез озона остается прежним из-за неизменности заряда q, а нагрев разряда, барьеров и озоногазовой смеси уменьшается, вследствие чего разложение озона падает. В итоге выход озона от отдельного микроразряда и соответственно в заявляемом озонаторе увеличится.

При этом эффективность перераспределения тепловыделения определяется соотношением емкостей:

Сэб,

где Сэ - емкость одной полосы относительно ближайших полос противоположного электрода;

Сб - емкость прибарьерной части микроразряда.

В первом приближении соотношение между емкостями можно заменить площадями:

,

здесь Δ и - ширина и длина полосы;

dб - диаметр прибарьерной части микроразряда. Отсюда ограничение по длине полос электродов 4 и 5:

.

Согласно [3, с. 24] типичные диаметры микроразрядов 5-6 мм. При dб=6 мм и Δ=0,5 мм получим см.

В случае повышенной емкости Сэ изменения микроразрядного тока незначительны. Микроразрядный ток формируется в основном за счет энергии, равной . Подключение в этом случае высокоомных резисторов практически не оказывает влияния на микроразрядный ток, так как до момента возникновения микроразряда значительная емкость Сэ уже заряжена. Выделение тепла в микроразряде по-прежнему будет высоким.

Для повышения влияния высоомных резисторов на микроразрядные процессы необходимо снижать межэлектродную емкость. Для обеспечения минимальной емкости Сэ полосы электрода 2 расположены так, что проекции осевых продольных линий этих полос на поверхность расположения полос другого электрода совпадают с продольной линией, разделяющей расстояние между каждыми двумя полосами электрода 3 пополам. В этом случае расстояние между проволочными электродами будет максимальным, а межэлектродная емкость соответственно минимальной.

При проведении эксперимента осуществлялось сравнение по выходу озона озонатора с резисторами и без. Производительность заявляемого озонатора на 40% оказалась выше. Эксперимент проходил с одинаковыми электрическими нагрузками (действующее напряжение высоковольтного источника питания U=10 кВ при частоте источника питания Гц).

Источники информации

1. Патент РФ №2427528, кл. С01В 13/11. Опубл. 27.08.2011. Бюл. №24.

2. Авторское свидетельство СССР №1564113, кл. С01В 13/11. Опубл. 15.05.90. Бюл. №18.

3. Самойлович В.Г. Физическая химия барьерного разряда / В.Г. Самойлович, В.И. Гибалов, К.В. Козлов. - М.: Изд-во МГУ, 1989. - 176 с. (с. 33).

Похожие патенты RU2660870C2

название год авторы номер документа
ОЗОНАТОР 2009
  • Пичугин Юрий Петрович
  • Матюнин Алексей Николаевич
RU2427528C1
ЭЛЕКТРОГАЗОДИНАМИЧЕСКОЕ УСТРОЙСТВО 2001
  • Пичугин Ю.П.
RU2200126C1
ЭЛЕКТРИЧЕСКИЙ ОЗОНАТОР 2002
  • Пичугин Ю.П.
RU2227119C2
ЭЛЕКТРИЧЕСКИЙ ОЗОНАТОР 2002
  • Пичугин Ю.П.
RU2248319C2
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ОЗОНА В ЭЛЕКТРИЧЕСКОМ РАЗРЯДЕ 2004
  • Пичугин Юрий Петрович
RU2275324C1
ГЕНЕРАТОР ОЗОНА Ю.П.ПИЧУГИНА 1998
  • Пичугин Ю.П.
RU2135407C1
УСТРОЙСТВО ДЛЯ ГЕНЕРИРОВАНИЯ ОЗОНА 2007
  • Пичугин Юрий Петрович
  • Кравченко Галина Алексеевна
RU2355627C9
ОЗОНАТОР 2005
  • Тышкевич Евгений Валентинович
RU2307787C2
ОЗОНАТОР 2008
  • Пахомов Виктор Иванович
  • Максименко Владимир Андреевич
  • Пахомов Александр Иванович
  • Буханцов Кирилл Николаевич
RU2394756C1
УСТРОЙСТВО ДЛЯ ГЕНЕРИРОВАНИЯ ОЗОНА 2012
  • Пуресев Николай Иванович
  • Гордееня Евгений Аркадьевич
  • Назаров Юрий Анатольевич
RU2499765C1

Иллюстрации к изобретению RU 2 660 870 C2

Реферат патента 2018 года Озонатор

Изобретение относится к аппаратам синтеза озона из кислорода. Озонатор содержит два высокоомных электрода в виде полос, закрепленных на обеих поверхностях диэлектрического барьера и разнесенных так, что полосы одного электрода расположены относительно полос другого электрода в последовательно чередующемся порядке. Каждая полоса электродов подключена к высоковольтному источнику напряжения через резистор. Полосы одного электрода расположены так, что проекции осевых продольных линий этих полос на поверхность расположения полос другого электрода совпадают с продольной линией, разделяющей расстояние между каждыми двумя полосами этого другого электрода. Технический результат: повышение производительности устройства, упрощение его конструкции. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 660 870 C2

1. Озонатор, содержащий два высокоомных электрода в виде полос, закрепленных на обеих поверхностях диэлектрического барьера и разнесенных так, что полосы одного электрода расположены относительно полос другого электрода в последовательно чередующемся порядке, а каждая полоса электродов подключена к высоковольтному источнику напряжения, отличающийся тем, что каждая полоса электродов подключена к источнику напряжения через резистор.

2. Озонатор по п. 1, отличающийся тем, что полосы одного электрода расположены так, что проекции осевых продольных линий этих полос на поверхность расположения полос другого электрода совпадают с продольной линией, разделяющей расстояние между каждыми двумя полосами этого другого электрода.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660870C2

Озонатор 1988
  • Энгельшт Владимир Семенович
  • Ларькина Лилия Трофимовна
  • Нашницын Юрий Ионович
SU1564113A1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ОЗОНА 1992
  • Ляпин А.Г.
  • Певчев Б.Г.
  • Шевцов Э.Н.
RU2036130C1
Устройство для обработки газа в электрическом разряде 1990
  • Быстров Николай Дмитриевич
  • Журавлев Олег Анатольевич
  • Кравцов Андрей Ильич
SU1756267A1
Способ приготовления сернистого красителя защитного цвета 1915
  • Настюков А.М.
SU63A1
US 4152603 A1, 01.05.1979
Д.Андроников "Особенности выбора и применения резисторов в силовой технике", Силовая электроника, 2, 2007
Самойлович В.Г
"Физическая химия барьерного разряда", Москва: МГУ, 1989, с.92.

RU 2 660 870 C2

Авторы

Матюнин Алексей Николаевич

Пичугин Юрий Петрович

Даты

2018-07-10Публикация

2016-05-18Подача