Изобретение относится к области испарительно-конденсационных устройств и может быть использовано в области криогенных и средних температур, и может быть использовано при разработке разнообразных систем охлаждения, в том числе при разработке систем охлаждения космических аппаратов, работающих в условиях невесомости.
Известно бесконечное количество патентов [1-2] j, описывающих тепловые трубы и термосифоны, содержащие корпус 1 с зонами испарения 2 и конденсации 3, конденсатопроводом 4, связывающим зону испарения 2 с зоной конденсации 3 и паропроводом 5.
Чаще всего для возврата конденсата в зону испарения используются капиллярные структуры - процесс очень медленный, ограничивающий передачу тепла. Использование электрических, магнитных, ультразвуковых, центробежных сил усиливают эффективность возврата конденсата в область испарения, но делают область их применения достаточно узкими. Так, электрогидродинамические тепловые трубы, использующие электрические поля, находят свое применение для охлаждения высоковольтного оборудования, магнитные поля - для охлаждения преимущественно электродвигателей и других устройств, использующих магнитные поля и т.д.
Задачей изобретения является использование теплового явления - Эффекта Лейденфроста для возврата конденсата в зону испарения.
Поставленная задача достигается тем, что в тепловой трубе, содержащей корпус с зонами испарения и конденсации, конденсатопровод, связывающий зону испарения с зоной конденсации, и паропровод, конденсатопровод расположен с внешней стороны корпуса, внутренняя поверхность конденсатопровода снабжена насечкой пилообразной формы, наклонная часть насечки обращена в сторону зоны испарения, конденсатопровод снабжен с противоположных сторон теплоизоляционными втулками, сам конденсатопровод снабжен высокотемпературным нагревателем, между зоной конденсации и конденсатопроводом установлен капельный дозатор, а насечка состыкована с капиллярной структурой в зоне испарения.
При этом конденсатопровод может быть расположен соосно или под углом к оси корпуса и, частично, в зоне испарения, внедрен внутрь корпуса.
На торце корпуса, в зоне испарения, может быть установлена трубка из капиллярного материала, состыкованная с капиллярной структурой в зоне испарения, причем конец конденсатопровода в зоне испарения расположен выше капиллярной трубки.
Способ работы тепловой трубы путем возврата конденсата в зону испарения осуществляется посредством возврата конденсата в зону испарения путем капельного перемещения конденсата в конденсатопроводе, снабженном насечкой пилообразной формы с наклонной плоскостью, направленной в сторону испарителя при разогреве теплоизолированного конденсатопровода до температуры, превышающей температуру Лейденфроста на 50-200°.
На фиг. 1 изображена основная часть корпуса 1 тепловой трубы, точнее конденсатопровод 4, внутренняя поверхность конденсатопровода 4 снабжена насечкой (резьбой) 6 пилообразной формы, наклонная часть 7 насечки 6 обращена в сторону зоны испарения 2.
На фиг. 2 приведена тепловая труба, у которой конденсатопровод 4 расположен соосно корпусу 1, частично, в зоне испарения 2 внедрен внутри корпуса 1, конденсатопровод 4 снабжен с противоположных сторон теплоизоляционными втулками 8, сам конденсатопровод снабжен высокотемпературным нагревателем 9, между зоной конденсации 3 и конденсатопроводом 4 установлен капельный дозатор 10, а насечка 6 состыкована с капиллярной структурой 11 в зоне испарения 2.
На фиг. 3 приведена тепловая труба с конденсатопроводом.
На фиг. 4 приведена тепловая труба, у которой конденсатопровод 4 стыкуется с нижней частью зоны испарения 2.
На фиг 5 приведена тепловая труба, у которой в зоне испарения 2 на торце корпуса 1 установлена капиллярная трубка 13 из капиллярного материала, состыкованная с капиллярной структурой 11 в зоне испарения 2, а конденсатопровод 4 в зоне испарения 2 установлен над трубкой 13.
Работает предлагаемая тепловая труба следующим образом. При попадании конденсата в капельный дозатор 10 конденсат поступает в конденсатопровод 4 в виде капель конденсата 12. Капли 12, попадая на пилообразную насечку 6 и при разогреве конденсатопровода 4 до определенной температуры начинает двигаться против сил тяжести и в итоге возвращается в зону испарения 2. Пар, проходя через паропровод 5, снова попадает в зону конденсации 3. Пар не может попасть в конденсатопровод 4, обладающий в сотни раз большим гидравлическим сопротивлением, чем паропровод 5.
В качестве прототипа для способа можно рассмотреть широко известный способ работы тепловой трубы путем испарения жидкости в зоне испарения 2, конденсации в зоне отвода тепла 3 и возврата конденсата в зону испарения 2 капиллярными силами. Такой способ вызывает существенные ограничения на возможности в теплопередаче, особенно в условиях, когда испаритель 2 в поле сил тяжести расположен выше зоны конденсации.
Предлагаемый способ работы тепловой трубы предполагает осуществлять работу тепловой трубы путем испарения жидкости в зоне испарения 2, конденсации в зоне отвода тепла 3 и возврата конденсата в зону испарения 2.
Особенность предлагаемого способа работы тепловой трубы проявляется в том, что возврат конденсата в зону испарения осуществляется путем капельного перемещения конденсата в конденсатопроводе 4, снабженном насечкой пилообразной формы, обращенной наклонной частью насечки в сторону испарителя, при разогреве теплоизолированного конденсатопровода 4 до температуры, превышающей температуру Лейденфроста на 50-200°.
Пар, вырывающийся из-под капли 12, не дает возможности соприкасаться с насечкой 6. Благодаря пилообразной форме насечки 6 пар, вырывающийся из-под капли 12, уже не равномерно истекает во все стороны, а создается преимущественно направленное движения пара в одну сторону, а капля 12 устремляется в сторону нагревателя 2 (жирная стрелка). Для воды эффект Лейденфроста начинается приблизительно с 500°С. Способ с передвижением капли против сил тяжести реализуется при несколько более высокой температуре. Активное движение капли 12 против сил тяжести наблюдается для воды при температуре свыше температуры Лейденфроста на 50°. Повышение температуры свыше 200° приводит к усиленному передвижению капель, но при этом время жизни капли падает (она начинает усиленно испаряться). Для воды время жизни капли воды оптимально в диапазоне температуры выше точки Лейденфроста на 50-200°С. При сопоставимых размерах конденсатопровода 4 и капли 12 давление за каплей становится больше и эффект движения капель 12 становится более эффективным. Перегрев теплоизолированного трубопровода 4 до температуры выше точки Лейденфроста над остальными элементами тепловой трубы не сказывается на испарительно-конденсационном процессе, а более быстрая подача конденсата в область испарения 2 позволяет разработать более эффективно работающие тепловые трубы.
Для жидкого воздуха или азота эффект Лейденфроста реализуется при комнатной температуре. Для реализации такого способа в криогенной области температур корпус конденсатопровода 4 должен быть снабжен ребристым теплообменником, собирающим тепло из окружающей среды. В противном случае испарение движущихся капель жидкого воздуха охладят конденсатопровод 4 до температуры ниже точки Лейденфроста и капли криогенной жидкости начнут касаться поверхности пилообразной насечки и полностью испаряться на начальном участке и не достигать зоны испарения.
Таким образом, предложена тепловая труба и способ ее работы, позволяющие более эффективно возвращать конденсат в зону испарения.
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛОВАЯ ТРУБА | 2016 |
|
RU2663373C2 |
Насос с тепловым приводом и способ его работы | 2016 |
|
RU2673308C2 |
ТЕПЛОВАЯ ТРУБА С ЭЛЕКТРОГИДРОДИНАМИЧЕСКИМ ГЕНЕРАТОРОМ | 2016 |
|
RU2638708C1 |
ТЕПЛОВАЯ ТРУБА | 2016 |
|
RU2650456C2 |
КОНВЕКТИВНЫЙ ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР | 2016 |
|
RU2674006C2 |
Сверхпроводящий накопитель энергии | 2018 |
|
RU2696831C1 |
СВЕРХПРОВОДЯЩИЙ НАКОПИТЕЛЬ ЭНЕРГИИ | 2016 |
|
RU2663365C2 |
Способ работы трубопроводного транспорта и устройство для его осуществления | 2016 |
|
RU2668452C2 |
Способ трехмерной идентификации твердого объекта | 2016 |
|
RU2654460C1 |
Способ работы двигателя и устройство для его осуществления | 2016 |
|
RU2654663C2 |
Изобретение относится к области теплотехники и может быть применено для тепловых труб криогенных и средних температур и может быть использовано при разработке разнообразных систем охлаждения, в том числе при разработке систем охлаждения космических аппаратов, работающих в условиях пониженной гравитации и невесомости. Особенность предлагаемого способа работы тепловой трубы проявляется в том, что возврат конденсата в зону испарения осуществляется путем капельного перемещения конденсата в конденсатопроводе 4, снабженном насечкой пилообразной формы, обращенной наклонной частью насечки в сторону испарителя, при разогреве теплоизолированного конденсатопровода 4 до температуры, превышающей температуру Лейденфроста на 50-200°. 2 н. и 2 з.п. ф-лы, 5 ил.
1. Тепловая труба, содержащая корпус с зонами испарения и конденсации, конденсатопровод, связывающий зону испарения с зоной конденсации, и паропровод, отличающаяся тем, что конденсатопровод расположен с внешней стороны корпуса, внутренняя поверхность конденсатопровода снабжена насечкой пилообразной формы, наклонная часть насечки обращена в сторону зоны испарения, конденсатопровод снабжен с противоположных сторон теплоизоляционными втулками, сам конденсатопровод снабжен высокотемпературным нагревателем, между зоной конденсации и конденсатопроводом установлен капельный дозатор, а насечка состыкована с капиллярной структурой в зоне испарения.
2. Тепловая труба по п. 1, отличающаяся тем, что конденсатопровод расположен соосно или под углом к оси корпуса, частично, в зоне испарения внедрен внутрь корпуса.
3. Тепловая труба по п. 1 или 2, отличающаяся тем, что на торце корпуса, в зоне испарения, установлена трубка из капиллярного материала, состыкованная с капиллярной структурой в зоне испарения, причем конец конденсатопровода в зоне испарения расположен выше капиллярной трубки.
4. Способ работы тепловой трубы путем возврата конденсата в зону испарения, отличающийся тем, что возврат конденсата в зону испарения осуществляется путем капельного перемещения конденсата в конденсатопроводе, снабженном насечкой пилообразной формы с наклонной плоскостью, направленной в сторону испарителя при разогреве теплоизолированного конденсатопровода до температуры, превышающей температуру Лейденфроста на 50-200°.
JPH 0387561 A, 12.04.1991 | |||
JP 2010054122 A, 11.03.2010 | |||
JP 5576425 B2, 20.08.2014 | |||
Регулируемая тепловая труба | 1987 |
|
SU1508085A1 |
СПОСОБ РЕГУЛИРОВАНИЯ ТЕРМИЧЕСКОГО СОПРОТИВЛЕНИЯ ТЕПЛОВОЙ ТРУБЫ | 1991 |
|
RU2015483C1 |
Авторы
Даты
2018-07-11—Публикация
2016-04-01—Подача