Многозеркальная гелиоустановка с общим приводом системы ориентации Российский патент 2018 года по МПК F24S23/70 F24S50/20 H02S20/30 

Описание патента на изобретение RU2661169C1

Изобретение относится к гелиотехнике, в частности к солнечным установкам с системой ориентации солнечных концентраторов, и может быть использовано для нагрева различных теплоносителей, производства электроэнергии, в опреснительных и других установках, преобразующих солнечную энергию в тепловую.

Как известно, для высокотемпературного нагрева коллекторов солнечнным излучением применяются концентраторы одно- и многозеркальные. Последние, независимо от формы отражающей поверхности, оснащаются системой ориентации отражателей, обеспечивающей направление солнечных лучей на общий коллектор. В гелиоустановках с малогабаритным, например, в форме трубки, коллектором точность фокусировки лучей должна быть очень высокой, а это усложняет и систему слежения за источником излучения, и привод каждого отражателя, который, как правило, работает автономно. Использование однозеркальных установок большой мощности усложняет изготовление и монтаж отражателя, его юстировку, а также требует более жесткую его конструкцию в условиях работы на местности с повышенными ветровыми нагрузками.

Известно множество самых различных многозеркальных солнечных установок в широком диапазоне и мощностей, и температуры нагрева.

Известна гелиоустановка, содержащая несколько концентраторов, снабженных приводами, систему слежения за Солнцем с блоком управления приводами, обеспечивающую возможность автоматической ориентации, и неподвижно закрепленный приемник излучения (SU 1141274 А1, F24J 2/00, 1985).

Главным недостатком данной установки являются сложность и высокая стоимость системы слежения за источником излучения, что стало причиной ее нерентабельности.

Известны и примеры самых упрощенных систем ориентации отражателей. Близким аналогом заявляемого устройства является гелиоустановка (патент RU №2196280, 2003 г., МПК F24J 2/14, F24J 2/52). Гелиоустановка содержит концентратор излучения, снабженный приводом, систему слежения за Солнцем с блоком управления и неподвижно закрепленный приемник излучения, при этом привод выполнен с возможностью обеспечения прямолинейного возвратно-поступательного перемещения концентратора, а концентратор выполнен зеркальным с цилиндрической поверхностью. При этом предпочтительными авторы считают гелиоустановки с несколькими концентраторами излучения, в фокальной плоскости каждого из которых неподвижно размещен фотоэлектрический преобразователь, при этом концентраторы имеют общий привод, обеспечивающий их плоско-параллельное перемещение.

Однако такой вариант предусматривает для каждого концентратора отдельный приемник излучения, а это при приемлемых размерах зеркала не позволяет обеспечить высокотемпературный нагрев абсорбера. К тому же, в нем не решен вопрос стабилизации режима лучепоглощения при изменении зенитального положения Солнца.

Целью разработки заявляемого устройства является создание гелиоустановки малой и средней мощности с возможностью высокотемпературного нагрева при максимально упрощенной конструкции и гелиоконцентраторов, и системы их ориентации, что позволило бы наряду с их заводским производством изготавливать малые установки из доступных материалов даже в условиях обычных мехмастерских.

При этом возможны два варианта приемников излучения: с соизмеримыми размерами их лучепоглащающей поверхности и отражателей - для низкотемпературного нагрева теплоносителя и работы фотоэлектрических преобразователей - и линейный приемник концентрированного излучения - для высокотемпературного нагрева. В первом случае могут использоваться в гелиоконцентраторах даже обычные плоские зеркала (фацеты) с шириной не более, чем у лучепоглащающей поверхности. Во втором - параболоцилиндрическую форму зеркал (с их относительно малой шириной) можно с допустимой погрешностью заменить цилиндрической, что упрощает конструкцию отражателей.

При этом длина лучеприемника должна превосходить длину зеркал настолько, чтобы лучи Солнца в заданном интервале его зенитального перемещения не выходили за пределы лучепоглощающей поверхности. Это позволит обходиться только системой азимутального слежения. Такой вариант линейного лучеприемника использован в конструкции солнечного нагревателя с защитой от атмосферных осадков (патент RU №2569423, 2015 г.).

В остальном же поставленная задача решается тем, что в многозеркальной гелиоустановке с системой слежения за источником излучения, с единым приемником лучевой энергии согласно изобретению оси поворота зеркал, расположеные параллельно земной оси, находятся в общей плоскости и жестко связаны с кронштейнами, расположенными в продольной плоскости симметрии зеркал по диагонали четырезвенников с попарно равными звеньями, ось одного из шарниров каждого четырехзвенника неподвижно закреплена в общей плоскости осей зеркала и приемника, а ось другого, находящегося в противолежащей вершине четырехзвенника, поддерживается приводом системы ориентации в общей плоскости расположения оси зеркала и Солнца, причем каждый из этих шарниров связан с общей тягой привода системы ориентации.

В такой конструкции гелиоустановки продольная плоскость симметрии каждого зеркала при солнечном освещении совпадает с биссектрисой угла между лучем, падающем на среднюю линию зеркала, и направлением от нее на ось приемника, что необходимо для точного наведения на него отраженных лучей.

Описание заявляемого устройства поясняется эскизом общего вида гелиоустановки, показанным на фиг. 1, кинематической схемой привода гелиоконцентратора - на фиг. 2. На фиг. 3 показан упрощенный вариант устройства слежения за источником излучения.

Гелиоустановка состоит из концентратора 1 солнечного излучения с набором зеркал 2, оси поворота которых, совпадающие с линией пересечения отражающей поверхности и продольной плоскости симметрии зеркала, расположены в одной плоскости на расстоянии между ними, исключающем затенение одного зеркала другим при любом положении солнечного диска в рабочем интервале α, который составляет в средних географических широтах в зимнее время не более 120°. При этом для оптимизации работы концентратора в зимних условиях оси поворота зеркал целесообразно наклонить в сторону экватора на 10-15° от их параллельного земной оси направления.

Гелиоконцетратор 1 с системой его ориентации установлен на основание 3. В его фокусе расположен приемник 4 солнечного излучения с продольным размером, превышающим длину зеркал 2 на величину, обеспечивающую улавливание всех отраженных лучей в любом зенитальным положении Солнца в расчетном интервале изменения его склонения. Приемник 4 закреплен на опоре 5, например, трубной конструкции и при необходимости имеет дополнительное крепление своей верхней точки. Одним из вариантов конструкции такого приемника может быть коллектор по вышеупомянутому патенту RU №2569423.

Гелиоконцетратор 1 оснащен системой ориентации с приводом 6 (см. фиг. 2). Для точной наводки отраженных лучей на приемник 4 каждое зеркало 2 связано, например, телескопическим кронштейном 7, установленным в продольной плоскости симметрии этого зеркала, с шарнирным четырехзвенником, имеющим попарно равные звенья: одно звено 8 посажено на ось, расположенную в плоскости, проходящей через оси зеркала 2 и приемника 4, второе, противолежащее, звено 9 имеет шарнир, свободно посажанный на ось этого же зеркала. Третье звено 10 соединяет шарниры звена 9 и кронштейна 7 (звенья 8 и 10 равные). Четвертым, неподвижным, звеном является само основание конструкции. При этом размер этого звена, а это расстояние между неподвижной осью звена 8 и осью зеркала, равен длине звена 9. Все звенья 9 соединены своими рычагами и общей тягой 11 с приводом 6 системы ориентации.

Устройство слежения этой системы в простейшем виде представлено расположенной в общей плоскости с осями шарниров одного из звеньев 9 плоской консолью 12 (см. фиг. 3) с экраном 13, с обеих сторон которой установлены датчики 14 прямого солнечного излучения. Эти датчики связаны с блоком управления (не показан) реверсивным двигателем 15 системы ориентации. Схема управления приводом 6 должна содержать конечные выключатели, а при необходимости обеспечения более точного останова и устройство торможения.

Гелиоустановка вкючается в работу с появлением прямого солнечного излучения в заданном секторе α. При этом облучаемый датчик 14 через систему управления приводом 6 включает двигатель 15, поворачивающий зеркала 2 в сторону источника излучения. Как только экран 13, установленный на консоли 12, закроет этот датчик от прямых лучей, а второй датчик при этом продолжает оставаться в тени, привод 6 останавливается. При небольшом смещении солнечного диска под его лучами датчик 14, установленный на "западной" стороне консоли 12, поворачивает зеркала 2 в том же направлении. Кинематическая схема их приводного механизма с кронштейнами 7, поворотными звенями 8, 9, 10 и общей тягой 11 обеспечивает в любой момент установившегося рабочего режима такое положение каждого зеркала 2, при котором отраженные лучи с достаточной точностью концентрируются на приемнике 4. Последняя зависит также от жесткости конструции и самого гелиоконцентратора 1, и его основания 3, а также опоры 5 приемника 4 солнечного излучения.

Итак, представленная конструкция гелиоустановки при своей предельной упрощенности позволяет с высокой эффективностью преобразовывать солнечную энергию в тепловую и электрическую без больших капитальных и эксплуатационных затрат.

Похожие патенты RU2661169C1

название год авторы номер документа
СОЛНЕЧНЫЙ НАГРЕВАТЕЛЬ С ЗАЩИТОЙ ОТ АТМОСФЕРНЫХ ОСАДКОВ 2014
  • Ясаков Николай Васильевич
RU2569423C1
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2008
  • Андреев Вячеслав Михайлович
  • Румянцев Валерий Дмитриевич
  • Ионова Евгения Александровна
  • Покровский Павел Васильевич
  • Ларионов Валерий Романович
  • Малевский Дмитрий Андреевич
RU2377472C1
КОНЦЕНТРАТОРНАЯ СОЛНЕЧНАЯ БАТАРЕЯ 2021
  • Андреев Вячеслав Михайлович
  • Малевский Дмитрий Андреевич
  • Покровский Павел Васильевич
  • Малевская Александра Вячеславовна
  • Ларионов Валерий Романович
  • Давидюк Николай Юрьевич
RU2773805C1
АВТОНОМНАЯ ЭНЕРГОЭФФЕКТИВНАЯ СОЛНЕЧНАЯ ВАРОЧНАЯ ПЕЧЬ 2013
  • Голощапов Владлен Михайлович
  • Баклин Андрей Александрович
  • Терехин Евгений Александрович
  • Негматуллаев Руслан Масхудович
  • Силаков Вадим Романович
  • Асанина Дарья Андреевна
RU2545174C2
АВТОМАТИЧЕСКИЙ ГЕЛИОКОНЦЕНТРАТОР С НЕПОДВИЖНЫМ ПРИЕМНИКОМ ИЗЛУЧЕНИЯ 2012
  • Блинников Юрий Владимирович
RU2491483C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕЛИОУСТАНОВКИ (ВАРИАНТЫ) 2007
  • Свиридов Константин Николаевич
  • Анисимова Светлана Сергеевна
  • Шадрин Вадим Иванович
  • Мурашев Владимир Михайлович
RU2338127C1
ФОТОЭНЕРГОУСТАНОВКА 2007
  • Андреев Вячеслав Михайлович
  • Ларионов Валерий Романович
  • Покровский Павел Васильевич
  • Румянцев Валерий Дмитриевич
RU2354896C1
АВТОНОМНАЯ СОЛНЕЧНАЯ ВАРОЧНАЯ ПЕЧЬ 2013
  • Голощапов Владлен Михайлович
  • Баклин Андрей Александрович
  • Негматуллаев Руслан Масхудович
  • Силаков Вадим Романович
  • Асанина Дарья Андреевна
RU2593034C2
Энергоустановка 1980
  • Селиванов Николай Павлович
SU918707A1
Солнечная энергоустановка 2020
  • Ясаков Николай Васильевич
RU2749932C1

Иллюстрации к изобретению RU 2 661 169 C1

Реферат патента 2018 года Многозеркальная гелиоустановка с общим приводом системы ориентации

Изобретение относится к гелиотехнике, в частности к солнечным установкам с системой ориентации солнечных концентраторов, и может быть использовано для нагрева различных теплоносителей, производства электроэнергии, в опреснительных и других установках, преобразующих солнечную энергию в тепловую. Технический результат заключается в повышении эффективности устройства. Многозеркальная гелиоустановка с общим приводом системы ориентации содержит оснащенный приводом концентратор излучения, систему слежения за Солнцем с блоком управления и неподвижно закрепленный приемник излучения. Оси поворота зеркал, расположенные параллельно земной оси, находятся в одной общей плоскости и жестко связаны с кронштейнами, расположенными в продольной плоскости симметрии зеркал и по диагонали четырехзвенников с попарно равными звеньями. Ось одного из шарниров каждого четырехзвенника неподвижно закреплена в общей плоскости осей зеркала и приемника, а ось шарнира в противолежащей вершине четырехзвенника находится в общей плоскости оси зеркала и источника излучения. Каждый из этих шарниров связан общей тягой с приводом системы ориентации. 3 ил.

Формула изобретения RU 2 661 169 C1

Многозеркальная гелиоустановка с общим приводом системы ориентации, содержащая оснащенный приводом концентратор излучения, систему слежения за Солнцем с блоком управления и неподвижно закрепленный приемник излучения, отличающаяся тем, что оси поворота зеркал, расположенные параллельно земной оси, находятся в одной общей плоскости и жестко связаны с кронштейнами, расположенными в продольной плоскости симметрии зеркал и по диагонали четырехзвенников с попарно равными звеньями, ось одного из шарниров каждого четырехзвенника неподвижно закреплена в общей плоскости осей зеркала и приемника, а ось шарнира в противолежащей вершине четырехзвенника находится в общей плоскости оси зеркала и источника излучения, причем каждый из этих шарниров связан общей тягой с приводом системы ориентации.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661169C1

ГЕЛИОУСТАНОВКА 2000
  • Карнаухов А.В.
RU2196280C2
Гелиокомплекс 1983
  • Сизов Юрий Михайлович
  • Баранов Владимир Кузьмич
  • Саватюгин Михаил Борисович
SU1141274A1
СОЛНЕЧНЫЙ НАГРЕВАТЕЛЬ С ЗАЩИТОЙ ОТ АТМОСФЕРНЫХ ОСАДКОВ 2014
  • Ясаков Николай Васильевич
RU2569423C1
Передвижной электробур для рытья неглубоких котлованов, например, под посадку растений 1950
  • Железняк А.Я.
SU93944A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1

RU 2 661 169 C1

Авторы

Ясаков Николай Васильевич

Даты

2018-07-12Публикация

2017-09-22Подача