УСТРОЙСТВО ТЕРМОСТАТИРОВАНИЯ БОРТОВОЙ АППАРАТУРЫ ПОЛЕЗНОГО ГРУЗА В СОСТАВЕ КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ Российский патент 2018 года по МПК B64G5/00 

Описание патента на изобретение RU2661270C1

Изобретение относятся к ракетно-космической технике и предназначено для обеспечения температурного режима полезного груза (ПГ) и его бортовой аппаратуры в период предстартовой подготовки космической головной части (КГЧ) ракеты космического назначения (РКН).

В частности, полезным грузом может считаться блок выведения в составе КГЧ, который выводится на орбиту с помощью ракеты-носителя.

В настоящее время на современных ПГ возникла необходимость термостатирования бортовой аппаратуры в отсеках ПГ, размещенных под головным обтекателем (ГО) в период предстартовой подготовки (при его отработке в наземных условиях) вплоть до старта РКН.

Это продиктовано тем, что при предстартовой подготовке изделий требуется отведение избыточного тепла, например, при подзаряде аккумуляторных батарей в процессе длительной стоянки на старте, а также при проведении электрических проверок приборов отводящих избыточное тепло через их посадочные поверхности.

Известна бортовая система термостатирования ПГ и приборов системы управления КГЧ РН (патент RU №2353556 - аналог), включающая отверстия вдува термостатирующей среды (ТС) в КГЧ с диффузорами и отверстия истечения среды, обеспечивающие перетекание по длине КГЧ ТС и ее истечение, в процессе которых обеспечивают тепловой режим функционирования КА и приборов системы управления во время предстартовой подготовки КГЧ РКН.

Недостаток известного технического решения заключается в том, что для эффективного теплосъема интерференционным обтеканием приборы должны находиться в потоке ТС и теплоотвод с приборов должен проводиться со всей поверхности прибора. Если теплоотводящими поверхностями являются посадочные места приборов и приборы размещены внутри отсеков ПГ, известное устройство термостатирования является неэффективным. Например, для аппаратуры, устанавливаемой в негерметичных отсеках ПГ.

Известна «Система обеспечения теплового режима межорбитального космического буксира «Фрегат»» (УДК 629.78.06-533.6 «Фрегат», Вестник НПО имени С.А. Лавочкина, 2014 г, №1 (22), стр. 37-40), включающая газоциркуляционные системы терморегулирования, экранно-вакуумную теплоизоляцию (ЭВТИ), радиаторы, обеспечивающие тепловой режим приборных герметичных отсеков. Циркуляция газа по контуру каждого отсека осуществляется вентиляторами. Газ, проходя вдоль конструкции приборных отсеков, вступает в теплообмен с блоками аппаратуры внутри отсеков. Основная часть теплового потока отводится в зону радиатора-охладителя и излучается в космос или на этапе предстартовой подготовки, на стартовом комплексе (СК) в составе РКН, отводится в воздушную среду под ГО. В качестве радиатора используются поверхности крышек каждого из приборных отсеков. Данное устройство термостатирования принято в качестве прототипа.

Недостаток известного технического решения заключается в том, что:

- данную систему невозможно использовать в негерметичных отсеках ПГ при орбитальном полете из-за отсутствия газовой среды в отсеках. Использование данной системы в негерметичных отсеках только при предстартовой подготовке приводит к тому, что увеличивается масса ПГ, выводимого на орбиту за счет массы газоциркуляционной системы, неиспользуемой при штатной эксплуатации ПГ в полете;

- использование вентиляторов снижают надежность функционирования системы из-за возможности потери их работоспособности;

- в негерметичных отсеках, где отвод тепловых потоков осуществляется от бортовой аппаратуры на их посадочные места известное устройство (Система обеспечения теплового режима межорбитального космического буксира «Фрегат») является неэффективным из-за малых площадей теплоотводящих поверхностей.

Задачей предложенного технического решения является расширение эксплуатационных возможностей и повышение надежности термостатирования тепловыделяющей бортовой аппаратуры ПГ при проведении электрических включений на этапе предстартовой подготовки на СК, в случае размещения бортовой аппаратуры в негерметичных отсеках ПГ.

Указанная задача достигается тем, что в устройстве термостатирования бортовой аппаратуры ПГ в составе КГЧ, включающей экранно-вакуумную тепловую изоляцию на внешней поверхности ПГ, радиатор-охладитель, на поверхностях которого нанесены терморегулирующие покрытия, отверстия вдува и истечения газового термостатирующего компонента в КГЧ, в месте установки бортовой аппаратуры ПГ на теплопроводящую панель в качестве радиатора-охладителя используется силовая оболочка ПГ, с выполненным вырезом в экранно-вакуумной тепловой изоляции ПГ в зоне расположения теплопроводящей панели, размер которого должен соответствовать размеру теплопроводящей панели, причем на теплопроводящую панель со стороны радиатора-охладителя полезного груза нанесено терморегулирующее покрытие и установлена она относительно радиатора-охладителя полезного груза с зазором, образующим газовую прослойку.

На фиг. 1 и фиг. 2 представлено заявленное устройство.

В устройство термостатирования БА 1 ПГ 2 в составе КГЧ РКН, включающее экранно-вакуумную тепловую изоляцию 3 на внешней поверхности ПГ 2, радиатор-охладитель 4, на поверхностях которого нанесены терморегулирующие покрытия 5, отверстия вдува и истечения 6, 7 газового термостатирующего компонента в космической головной части, в котором обеспечивают тепловой режим функционирующей БА 1 ПГ 2 введено в месте установки БА 1 ПГ 2 на теплопроводящую панель 8 в качестве радиатора-охладителя 4 использование силовой оболочки 9 ПГ 2, с выполненным вырезом 10 в экранно-вакуумной тепловой изоляции 3 ПГ 2 в зоне расположения теплопроводящей панели 8, причем на теплопроводящую панель 8 со стороны радиатора-охладителя 4 ПГ 2 нанесено терморегулирующее покрытие 11 и установлена она относительно радиатора-охладителя 4 ПГ 2 с зазором λ, образующим газовую прослойку.

Устройство термостатирования БА 1 ПГ 2 в составе КГЧ РКН работает следующим образом.

Тепло, выделяющееся от работающей БА 1 ПГ 2, равномерно распределяется по теплопроводящей панели 8. Для уменьшения контактного термического сопротивления между БА 1 и теплопроводящей панелью 8 в месте контакта, например, наносится теплопроводная паста (на чертеже не показана).

От теплопроводящей панели 8 тепло передается на радиатор-охладитель 4 ПГ 2 потоком излучения, а также свободной конвекцией и теплопроводностью прослойки газовой среды. Для максимального увеличения потока излучения на теплопроводящую панель 8 со стороны радиатора-охладителя 4 наносится терморегулирующее покрытие 11 с высокой степенью черноты, например более 0,85. На внутреннюю и внешнюю поверхность радиатора-охладителя 4 ПГ 2 наносятся терморегулирующие покрытия 5 с высокой степенью черноты, например, ТР-СО-ЦМ со степенью черноты более 0,9.

С наружной поверхности радиатора-охладителя 4 ПГ 2 в месте, где выполнен вырез 10 в экранно-вакуумной тепловой изоляции 3, тепло передается конвективным теплообменом термостатирующей среде под ГО и лучистым теплообменом на поверхность многослойной изоляции ГО.

Использование заявленного устройства термостатирования БА ПГ позволит расширить эксплуатационные возможности и повысить надежность термостатирования бортовой аппаратуры ПГ в составе КГЧ РКН при предстартовой подготовке в случае проведения электрических включений и проверок бортовой аппаратуры, расположенной в негерметичных отсеках ПГ.

Похожие патенты RU2661270C1

название год авторы номер документа
Способ термостатирования бортовой аппаратуры полезного груза, размещенного внутри головного обтекателя космической головной части ракеты космического назначения, и устройство для его реализации 2017
  • Воронин Евгений Александрович
  • Иванеко Юрий Михайлович
  • Леденейкин Сергей Владимирович
  • Сагитов Марат Ахметгалиевич
  • Скворцов Валерий Павлович
  • Солунин Владимир Сергеевич
  • Шапаренко Павел Юрьевич
RU2673439C1
УСТРОЙСТВО ТЕРМОСТАТИРОВАНИЯ БОРТОВОЙ АППАРАТУРЫ КОСМИЧЕСКОГО АППАРАТА, РАЗМЕЩЕННОГО В СБОРОЧНО-ЗАЩИТНОМ БЛОКЕ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ (ВАРИАНТЫ) 2013
  • Воронин Евгений Александрович
  • Гребнев Николай Егорович
  • Леденейкин Сергей Владимирович
  • Моисеев Валентин Петрович
  • Солунин Владимир Сергеевич
  • Филатов Сергей Анатольевич
RU2570849C2
УСТРОЙСТВО ОБЕСПЕЧЕНИЯ ТЕПЛОВОГО РЕЖИМА И ЧИСТОТЫ КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ С КРУПНОГАБАРИТНОЙ ПОЛЕЗНОЙ НАГРУЗКОЙ 2014
  • Воронин Евгений Александрович
  • Иванеко Юрий Михайлович
  • Лагно Олег Геннадьевич
  • Леденейкин Сергей Владимирович
  • Солунин Владимир Сергеевич
  • Филатов Сергей Анатольевич
RU2557092C1
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ПРИБОРНОГО ОТСЕКА РАЗГОННОГО БЛОКА КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ И БОРТОВАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Болотин Виктор Александрович
RU2290353C2
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ПРИБОРНОГО ОТСЕКА РАЗГОННОГО БЛОКА КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ И БОРТОВАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2004
  • Легостаев Виктор Павлович
  • Алиев Валерий Гейдарович
  • Шорин Александр Николаевич
  • Дядькин Анатолий Александрович
  • Белошицкий Александр Васильевич
  • Болотин Виктор Александрович
  • Казаков Михаил Иванович
  • Юрьев Дмитрий Александрович
RU2279377C2
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ОБЪЕКТОВ, ПОСЛЕДОВАТЕЛЬНО РАЗМЕЩЕННЫХ В ОТСЕКАХ КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ 2005
  • Легостаев Виктор Павлович
  • Алиев Валерий Гейдарович
  • Шорин Александр Николаевич
  • Дядькин Анатолий Александрович
  • Белошицкий Александр Васильевич
  • Ставрицкий Александр Константинович
  • Болотин Виктор Александрович
  • Шувалов Михаил Петрович
RU2294864C2
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДНЫХ ХАРАКТЕРИСТИК ДРЕНАЖНЫХ УСТРОЙСТВ ОТСЕКА ЛЕТАТЕЛЬНОГО АППАРАТА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Болотин В.А.
  • Дядькин А.А.
  • Казаков М.И.
  • Лебедев В.И.
RU2253095C2
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ПОЛЕЗНОГО ГРУЗА И ПРИБОРОВ СИСТЕМЫ УПРАВЛЕНИЯ КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ И БОРТОВАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Болотин Виктор Александрович
  • Дядькин Анатолий Александрович
  • Симакова Татьяна Владимировна
RU2353556C2
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ОБЪЕКТОВ РАКЕТНОГО БЛОКА И БОРТОВАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Белошицкий Александр Васильевич
  • Болотин Виктор Александрович
  • Дядькин Анатолий Александрович
  • Казаков Михаил Иванович
RU2280596C2
БЛОК ВЫВЕДЕНИЯ КОСМИЧЕСКОГО АППАРАТА 2019
  • Сторож Александр Дмитриевич
  • Лукащук Иван Петрович
  • Шапаренко Павел Юрьевич
  • Лагно Олег Геннадьевич
  • Китаев Александр Ирикович
  • Быков Сергей Михайлович
  • Миненко Сергей Иванович
  • Гуртов Александр Сергеевич
  • Липатникова Татьяна Игоревна
  • Вавин Михаил Юрьевич
  • Фомакин Виктор Николаевич
  • Левин Аркадий Борисович
  • Царьков Василий Николаевич
  • Семашкина Светлана Владимировна
  • Перхалев Алексей Анатольевич
RU2726302C1

Иллюстрации к изобретению RU 2 661 270 C1

Реферат патента 2018 года УСТРОЙСТВО ТЕРМОСТАТИРОВАНИЯ БОРТОВОЙ АППАРАТУРЫ ПОЛЕЗНОГО ГРУЗА В СОСТАВЕ КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ

Изобретение относится к средствам предстартовой подготовки космической головной части ракеты с полезным грузом (ПГ) (2), имеющим бортовую аппаратуру (БА) (1). Устройство включает в себя экранно-вакуумную тепловую изоляцию (ЭВТИ) (3) на поверхности ПГ (2), радиатор-охладитель (4) в виде силовой оболочки (9) ПГ, отверстия вдува (6) и истечения (7) термостатирующего газа. БА (1) установлена на теплопроводящую панель (8). Между поверхностями радиатора (4) и панели (8) предусмотрен зазор (газовая прослойка). Радиатор (4) и панель (8) снабжены терморегулирующими покрытиями (5) и (11) с высокой степенью черноты. В ЭВТИ (3) для отвода тепла излучением выполнен вырез (10) под панель (8). Техническим результатом является расширение эксплуатационных возможностей и повышение надежности термостатирования бортовой аппаратуры, размещаемой в негерметичных отсеках ПГ, при проведении предстартовых электрических включений. 2 ил.

Формула изобретения RU 2 661 270 C1

Устройство термостатирования бортовой аппаратуры полезного груза в составе космической головной части, включающее экранно-вакуумную тепловую изоляцию на внешней поверхности полезного груза, радиатор-охладитель, на поверхностях которого нанесены терморегулирующие покрытия, отверстия вдува и истечения газового термостатирующего компонента в космической головной части, отличающееся тем, что в месте установки бортовой аппаратуры полезного груза на теплопроводящую панель в качестве радиатора-охладителя используется силовая оболочка полезного груза с выполненным вырезом в экранно-вакуумной тепловой изоляции полезного груза в зоне расположения теплопроводящей панели, причём размер выреза должен соответствовать размеру теплопроводящей панели, на которую со стороны радиатора-охладителя полезного груза нанесено терморегулирующее покрытие, при этом панель установлена относительно радиатора-охладителя полезного груза с зазором, образующим газовую прослойку.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661270C1

Луженков В.В., Игнатенко А.П
Система обеспечения теплового режима межорбитального космического буксира "Фрегат"
Вестник НПО имени С.А
Лавочкина, 2014, N1 (22), с.37-40
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ПОЛЕЗНОГО ГРУЗА И ПРИБОРОВ СИСТЕМЫ УПРАВЛЕНИЯ КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ И БОРТОВАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Болотин Виктор Александрович
  • Дядькин Анатолий Александрович
  • Симакова Татьяна Владимировна
RU2353556C2
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ПРИБОРНОГО ОТСЕКА РАЗГОННОГО БЛОКА КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ И БОРТОВАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Болотин Виктор Александрович
RU2290353C2
СПОСОБ ТЕРМОСТАТИРОВАНИЯ ПРИБОРНОГО ОТСЕКА РАЗГОННОГО БЛОКА КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ И БОРТОВАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2004
  • Легостаев Виктор Павлович
  • Алиев Валерий Гейдарович
  • Шорин Александр Николаевич
  • Дядькин Анатолий Александрович
  • Белошицкий Александр Васильевич
  • Болотин Виктор Александрович
  • Казаков Михаил Иванович
  • Юрьев Дмитрий Александрович
RU2279377C2
СПОСОБ И УСТАНОВКА ДЛЯ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА 2002
  • Тесленко В.Н.
RU2230995C2
СИСТЕМА ОБЕСПЕЧЕНИЯ ТЕПЛОВОГО РЕЖИМА ПРИБОРНО-АГРЕГАТНОГО ОБОРУДОВАНИЯ РАЗГОННОГО РАКЕТНОГО БЛОКА 1998
  • Цихоцкий В.М.
  • Федотов В.К.
RU2149127C1
US 6027072 A, 22.02.2000.

RU 2 661 270 C1

Авторы

Воронин Евгений Александрович

Иванеко Юрий Михайлович

Китаев Александр Ирикович

Леденейкин Сергей Владимирович

Солунин Владимир Сергеевич

Филатов Сергей Анатольевич

Даты

2018-07-13Публикация

2017-06-29Подача