Способ оценки эффективности мишени противостоять воздействию кинетических снарядов Российский патент 2018 года по МПК G01L5/14 F41H1/00 

Описание патента на изобретение RU2662482C1

Изобретение относится к методам оценки эффективности бронебойных боеприпасов и брони при их соударении и может быть использовано при создании новых боеприпасов и новой брони для защиты объектов.

Для оценки эффективности бронебойных боеприпасов, как правило, проводят испытания стрельбой реальными снарядами по реальной броневой защите. При всей объективности такой оценки этот способ очень дорог.

Известны способы ориентировочной оценки параметров взаимодействия снаряда с броней, основанные на выполнении расчетов, основанных на экспериментальных исследованиях. На основании таких расчетов проводится оценка эффективности снаряда на стадии проектирования. Например, используются взаимосвязи длины бронебойного снаряда со свойствами материалов снаряда и мишени (Физика взрыва / Под ред. Л.П. Орленко. - изд. 3-е, переработанное. - В 2 т. Т. 2. - М: ФИЗМАТЛИТ, 2002. - 656 с.).

Недостатком этих способов является то, что они не позволяют выполнить оценки для различных скоростей соударения снаряда с мишенью.

В заявляемом способе предлагается для оценки эффективности брони по противодействию ударам кинетических снарядов использовать новый параметр, основанный на установленных закономерностях поведения материала мишени под действием снарядов. Этот параметр является характеристикой материала мишени.

Способ оценки эффективности мишени противостоять воздействию кинетических снарядов, заключается в том, что по пробной мишени конечной толщины со свойствами идентичными свойствам основной мишени производят удар снарядом в виде шара, со скоростью достаточной для возникновения кратера в зоне соударения, и появления в мишени трещин растяжения перпендикулярных направлению удара. Визуально фиксируют появление первой трещины растяжения в зоне между кратером и задней стенкой мишени. Измеряют расстояние В от задней стенки мишени до трещины. В случае откола части задней стенки мишени за величину В принимают толщину отколотой части в месте перпендикулярном направлению удара. Мишень с большим значением величины В при одинаковых параметрах соударения считают более эффективной.

Использование данного способа основано на результатах, проведенных автором расчетов и экспериментов. В результате этих исследований установлено, что линейный размер зоны воздействия ударной волны из зоны соударения снаряда с мишенью с энергией достаточной для разрушения материала можно оценить на основании данных экспериментальных наблюдений при действии «коротких» снарядов (шар, цилиндр) по мишеням небольшой толщины.

В случае соударения «коротких» снарядов с мишенью конечной толщины ударная волна сжатия отходит от поверхности, расширяющегося кратера (пояснения на фиг. 1), и достигает задней стенки мишени. Здесь она отражается, превращаясь в волну растяжения, распространяющуюся в обратном направлении. Возникновение волны растяжения обусловлено необходимостью равенства нулю мгновенных нормальных напряжений на свободной поверхности мишени во все моменты времени. Там, где эти напряжения превышают способность материала выдерживать действующую нагрузку, образуются трещины, центр которых расположен на оси направления удара. Чем больше расстояние от задней стенки мишени до трещины, тем материал мишени более эффективен по противодействию ударам снарядов, так как с увеличением этого расстояния растет уровень действующих напряжений, способных разрушить материал мишени. А это значит, что данный материал мишени более эффективен против воздействия на него кинетических снарядов.

Фиг. 1. Схема пробивания мишени «коротким» снарядом (левая часть рисунка). Образование волн растяжения при отражении волны сжатия от свободной поверхности (правая часть рисунка). Фиг. 2. Разрезанный образец мишени после нанесения по ней высокоскоростного удара: диаметр кратера в мишени D, диаметр снаряда d.

Использование мишеней конечной толщины (фактически тонких) связано с тем, что возникающая при соударении ударная волна быстро затухает и только при малом расстоянии до свободной поверхности она способна иметь энергию достаточную для разрушения металла мишени, хотя бы с образованием трещины напряжения. Но длина этой волны остается практически постоянной и позволяет судить о длине волны в зоне разрушения и способности материала мишени противостоять воздействию снарядов.

Определение этой величины важно также для расчета тепловой энергии, которая образуется при соударении снаряда с мишенью. На фиг. 2 приведена фотография экспериментального образца, в котором реализован процесс, рассмотренный выше, а именно, выполнено высокоскоростное соударение «короткого» цилиндрического снаряда диаметром d с мишенью конечной толщины.

Как видно, на определенном расстоянии от свободной задней поверхности мишени перпендикулярно направлению удара, наблюдается трещина растяжения. Эта трещина образована за счет возникшей в мишени ударной волны растяжения (в зоне пика волны растяжения), которая является продуктом волны сжатия, возникшей в зоне соударения, и частично повторяет ее параметры (длину волны, скорость распространения и др.).

Таким образом, измерение расстояния от задней стенки мишени позволяет оценить состояние материала мишени и способность его противостоять воздействию кинетических снарядов.

Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.

Похожие патенты RU2662482C1

название год авторы номер документа
Броневая преграда 2019
  • Кузнецов Николай Сергеевич
RU2717886C1
Способ выбора материалов для корпусов бронебойных подкалиберных снарядов 2019
  • Кузнецов Николай Сергеевич
RU2701672C1
Способ определения глубины пробития мишени бронебойными снарядами 2018
  • Кузнецов Николай Сергеевич
RU2695431C1
Способ определения глубины пробития мишени бронебойными подкалиберными снарядами 2019
  • Кузнецов Николай Сергеевич
RU2706280C1
Способ определения скорости кумулятивной струи в боеприпасах 2019
  • Кузнецов Николай Сергеевич
RU2722908C1
Способ повышения стойкости брони против воздействия кинетических снарядов 2018
  • Кузнецов Николай Сергеевич
RU2711565C1
СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ ИЗ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 2004
  • Марахтанов М.К.
RU2260779C1
ПУЛЯ БРОНЕБОЙНАЯ 2012
  • Фадеев Валерий Сергеевич
  • Чигрин Юрий Леонидович
  • Штанов Олег Викторович
  • Ободовский Юрий Васильевич
  • Паладин Николай Михайлович
  • Михеев Владимир Григорьевич
  • Щитов Виктор Иванович
  • Довгаль Олег Викторович
RU2502944C1
Бронебойный оперенный подкалиберный снаряд 2019
  • Гаршин Олег Николаевич
RU2738687C2
ПАТРОН БРОНЕБОЙНЫЙ 2012
  • Фадеев Валерий Сергеевич
  • Чигрин Юрий Леонидович
  • Штанов Олег Викторович
  • Ободовский Юрий Васильевич
  • Паладин Николай Михайлович
  • Михеев Владимир Григорьевич
  • Щитов Виктор Иванович
  • Довгаль Олег Викторович
RU2502945C1

Иллюстрации к изобретению RU 2 662 482 C1

Реферат патента 2018 года Способ оценки эффективности мишени противостоять воздействию кинетических снарядов

Изобретение относится к методам оценки эффективности бронебойных боеприпасов и брони при их соударении и может быть использовано при создании новых боеприпасов и новой брони для защиты объектов. Способ оценки эффективности мишени противостоять воздействию кинетических снарядов заключается в том, что по пробной мишени конечной толщины со свойствами, идентичными свойствам основной мишени, производят удар снарядом в виде шара, со скоростью, достаточной для возникновения кратера в зоне соударения и появления в мишени трещин растяжения, перпендикулярных направлению удара. Визуально фиксируют появление первой трещины растяжения в зоне между кратером и задней стенкой мишени. Измеряют расстояние В от задней стенки мишени до трещины. В случае откола части задней стенки мишени, за величину В принимают толщину отколотой части в месте, перпендикулярном направлению удара. Мишень с большим значением величины В при одинаковых параметрах соударения считают более эффективной. Технический результат – возможность выполнения оценки для различных скоростей соударения снаряда с мишенью с использованием нового параметра, являющегося характеристикой материала мишени. 2 ил.

Формула изобретения RU 2 662 482 C1

Способ оценки эффективности мишени противостоять воздействию кинетических снарядов, заключающийся в том, что с помощью эмпирического соотношения с учетом параметров снаряда и свойств мишени определяют параметры разрушения мишени в зоне соударения, отличающийся тем, что по пробной мишени конечной толщины со свойствами, идентичными свойствам основной мишени, производят удар снарядом в виде шара со скоростью, достаточной для возникновения кратера в зоне соударения и появления в мишени трещин растяжения, перпендикулярных направлению удара, фиксируют появление первой трещины растяжения в зоне между кратером и задней стенкой мишени, измеряют расстояние В от задней стенки мишени до трещины, при отколе части задней стенки мишени за величину В принимают толщину отколотой части в месте, перпендикулярном направлению удара, мишень с большим значением величины В при одинаковых параметрах соударения считают более эффективной.

Документы, цитированные в отчете о поиске Патент 2018 года RU2662482C1

Физика взрыва / Под ред
Л.П
Орленко
- изд
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Т
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
- М: ФИЗМАТЛИТ, 2002
Прибор для механического определения проекций линий данной длины и данного направления 1923
  • Славачевский К.А.
SU656A1
СПОСОБ ОЦЕНКИ ЗАЩИТНЫХ СВОЙСТВ БРОНЕШЛЕМОВ ПУТЕМ ОПРЕДЕЛЕНИЯ РИСКА ЗАБРОНЕВОЙ КОНТУЗИОННОЙ ТРАВМЫ ГОЛОВЫ 2013
  • Кузнецов Вадим Алексеевич
  • Киреев Виктор Борисович
  • Синигин Виктор Михайлович
  • Шолпо Наталия Николаевна
  • Осипова Зоя Павловна
RU2549691C2
Устройство для разлива и взвешивания жидкостей 1948
  • Маслов Д.А.
SU82308A1
СТЕНД ДЛЯ ОПРЕДЕЛЕНИЯ ЗАЩИТНЫХ СВОЙСТВ БРОНЕЖИЛЕТОВ 2008
  • Трофимов Петр Викторович
  • Мельников Владимир Иванович
  • Дворников Вячеслав Владимирович
  • Романова Татьяна Сергеевна
  • Логаткин Станислав Михайлович
  • Тырнов Евгений Петрович
RU2397468C2

RU 2 662 482 C1

Авторы

Кузнецов Николай Сергеевич

Даты

2018-07-26Публикация

2017-10-19Подача