Изобретение относится к области ветеринарии.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК А61K 047/02, А61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат.2095055 МПК А61K 9/52, А61КK 9/16, А61K 9/10 Российская Федерация опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. 2091071 МПК А61K 35/10 Российская Федерация опубликован 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатками способа являются применение шаровой мельницы и длительность процесса.
В пат. 2076765 МПК B01D 9/02 Российская Федерация опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010 МПК А61K 9/52, А61K 9/50, А61K 9/22, А61K 9/20, А61K 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. 2139046 МПК А61K 9/50, А61K 49/00, А61K 51/00 Российская Федерация опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.
Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.
В пат. 2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. WO/2010/076360 ES МПК B01J 13/00; А61K 9/14; А61K 9/10; А61K 9/12 опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.
Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.
В пат. WO/2010/119041 ЕР МПК A23L 1/00 опубликован 21.10.2010 предложен способ получения микрошариков, сожержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.
В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00 опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US МПК А61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00 опубликован 13.10.2011 предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др. Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProCepT, Бельгия)).
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).
В пат. WO/2011/104526 GB МПК B01J 13/00; В01J 13/14; С09В 67/00; C09D 11/02 опубликован 01.09.2011 предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.
Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул биопага в конжаковой камеди, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул биопага-Д, отличающийся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул биопага-Д в конжаковой камеди, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа
Результатом предлагаемого метода являются получение нанокапсул биопага-Д в конжаковой камеди при 25°C в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1 Получение Нанокапсул биопага-Д в конжаковой камеди, соотношение ядро : оболочка 1:3
К 3 г суспензии конжаковой камеди в бутаноле прибавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г биопага-Д добавляют в суспензию конжаковой камеди в бутаноле. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.
Получено 4,0 г белого порошка. Выход составил 100%.
ПРИМЕР 2 Получение нанокапсул биопага-Д в конжаковой камеди, соотношение ядро : обоочка 1:1
К 1 г суспензии конжаковой камеди в бутаноле прибавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г порошка биопага-Д добавляют в суспензию конжаковой камеди в бутаноле. После этого добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.
Получено 2,0 г белого порошка. Выход составил 100%.
ПРИМЕР 3 Получение нанокапсул биопага-Д в конжаковой камеди, соотношение ядро : оболочка 1:5
К 5 г суспензии конжаковой камеди в ибутаноле прибавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 биопага-Д добавляют в суспензию конжаковой камеди в бутаноле. Затем добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают, сушат при комнатной температуре.
Получено 6,0 г белого порошка. Выход составил 100%.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокапсул биопага-Д в конжаковой камеди | 2017 |
|
RU2666596C1 |
Способ получения нанокапсул биопага-Д в геллановой камеди | 2017 |
|
RU2663588C1 |
Способ получения нанокапсул сухого экстракта топинамбура | 2016 |
|
RU2626821C1 |
Способ получения нанокапсул метронидазола в конжаковой камеди | 2015 |
|
RU2613108C1 |
Способ получения нанокапсул биопага-Д в каппа-каррагинане | 2018 |
|
RU2691954C1 |
Способ получения нанокапсул смеси биопага-Д с бриллиантовой зеленью | 2016 |
|
RU2626836C2 |
Способ получения нанокапсул биопага-Д в альгинате натрия | 2017 |
|
RU2667464C2 |
Способ получения нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди | 2015 |
|
RU2688670C1 |
Способ получения нанокапсул антибиотиков в геллановой камеди | 2014 |
|
RU2619328C2 |
Способ получения нанокапсул лекарственных препаратов группы пенициллинов в конжаковой камеди | 2015 |
|
RU2631883C2 |
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул биопага-Д в оболочке из конжаковой камеди. Способ характеризуется тем, что к суспензии конжаковой камеди в бутаноле прибавляют 0,01 г Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют 1 г порошка биопага-Д, затем добавляют 5 мл хлороформа, далее полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет в нанокапсулах 1:1, или 1:3, или 1:5. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использовано в ветеринарной медицине. 3 пр.
Способ получения нанокапсул ветеринарного препарата биопага-Д, характеризующийся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, при этом к суспензии конжаковой камеди в бутаноле прибавляют 0,01 г Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют 1 г порошка биопага-Д, затем добавляют 5 мл хлороформа, далее полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет в нанокапсулах 1:1, или 1:3, или 1:5.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ БИОПАГА-Д | 2014 |
|
RU2550950C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЦЕФАЛОСПОРИНОВЫХ АНТИБИОТИКОВ В КСАНТАНОВОЙ КАМЕДИ | 2014 |
|
RU2550932C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЭКСТРАКТА ЗЕЛЕНОГО ЧАЯ | 2015 |
|
RU2595834C1 |
NAGAVARMA B | |||
V | |||
N | |||
Different techniques for preparation of polymeric nanoparticles, Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23 | |||
ЧУЕШОВ В.И., Промышленная технология лекарств в 2-х томах, том 2, 2002, стр | |||
Передвижная комнатная печь | 1922 |
|
SU383A1 |
Авторы
Даты
2018-08-17—Публикация
2017-09-11—Подача