Предлагаемое устройство относится к области теплоэнергетики и касается детандер-генераторных агрегатов (ДГА) и парокомпрессионных термотрансформаторов (ПКТТ) для производства электроэнергии тепла и холода при использовании технологических перепадов давления транспортируемого природного газа на станциях технологического понижения давления (газораспределительных станциях и газорегуляторных пунктах) системы газоснабжения.
Известна предназначенная для бестопливной генерации электроэнергии детандер-генераторная установка, содержащая трубопровод высокого давления, установленные по ходу газа и последовательно соединенные теплообменник, детандер, кинематически соединенный с электрическим генератором, электрически соединенным с двигателем, приводящим в движение компрессор, вход которого соединен с выходом испарителя, вход которого через дросселирующее устройство соединен с выходом теплообменника, образуя термотрансформатор (ТТ), в которой для подогрева газа перед детандером используется теплота вторичных энергетических ресурсов низкого потенциала или теплота окружающей среды. Недостатком такой установки является отсутствие возможности получения холода и тепла различных температурных потенциалов для передачи их потребителю (Агабабов B.C. Способ работы детандерной установки и устройство для его осуществления / Патент на изобретение №2150641. Россия. Бюл. №16. 10.06.2000 г. Приоритет от 15.06.99).
Известна бестопливная установка для централизованного комбинированного электро- и хладоснабжения, включенная между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем, содержащая линию подачи газа на детандер, установленный па ней первый теплообменник, детандер, кинематически соединенный с электрическим генератором, соединенным первой электрической связью с потребителем электроэнергии и холода и второй электрической связью с двигателем, приводящим в движение компрессор, вход которого соединен с выходом испарителя, вход которого по хладагенту через второй дроссель соединен с выходом первого теплообменника, источник тепла низкого температурного потенциала, линию отвода газа после детандера в газопровод низкого давления. Установка снабжена вторым теплообменником, установленным на линии отвода потока газа после детандера в газопровод низкого давления, соединенным с линией возврата первого хладоносителя от потребителя электроэнергии и холода, первым насосом подачи первого хладоносителя, выход которого соединен с потребителем электроэнергии и холода, вторым насосом подачи второго хладоносителя потребителю электроэнергии и холода из испарителя, выход которого соединен с потребителем электроэнергии и холода, при этом часть хладагента может быть направлена в третий дополнительный теплообменник, выход которого по хладагенту соединен с входом в компрессор, а вход по теплу низкого температурного потенциала соединен линией подачи тепла низкого температурного потенциала с установленным на ней третьим насосом, а выход по теплу низкого температурного потенциала соединен с источником тепла низкого температурного потенциала. Недостатком такой установки является отсутствие возможности получения тепла для передачи его потребителю (Клименко А.В., Агабабов B.C., Байдакова Ю.О., Смирнова У.И., Такташев Р.Н. Бестопливная установка для централизованного комбинированного электро- и хладоснабжения. Патент на полезную модель RU 0000158931 U1. Россия. Бюл. №2 20.01.2016. Приоритет от 26.06.2015).
Техническая задача, решаемая предлагаемым устройством, состоит в обеспечении возможности генерации без сжигания органического топлива для передачи потребителю, наряду с электроэнергией и холодом, тепловой энергии.
Технический эффект, обеспечивающий решение технической задачи, заключается в дополнительной возможности производства тепла для потребителя и достигается тем, что известная бестопливная установка, включенная между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем, содержащая линию подачи газа на детандер и установленный на ней первый теплообменник, детандер, кинематически соединенный с электрическим генератором, соединенным первой электрической связью с потребителем электроэнергии тепла и холода и второй электрической связью с двигателем, приводящим в движение компрессор, вход которого соединен с выходом испарителя, вход которого по хладагенту через второй дроссель соединен с выходом первого теплообменника, источник тепла низкого температурного потенциала, линию отвода газа после детандера в газопровод низкого давления, которая снабжена вторым теплообменником, установленным на линии отвода потока газа после детандера в газопровод низкого давления, соединенный с линией возврата первого хладоносителя от потребителя электроэнергии тепла и холода, первым насосом подачи первого хладоносителя, выход которого соединен с потребителем электроэнергии, тепла и холода, вторым насосом подачи второго хладоносителя потребителю электроэнергии тепла и холода из испарителя, выход которого соединен с потребителем электроэнергии, тепла и холода, третьим теплообменником, выход которого по хладагенту соединен с входом в компрессор, а вход по теплу низкого температурного потенциала соединен линией подачи тепла низкого температурного потенциала с установленным на ней третьим насосом, а выход по теплу низкого температурного потенциала соединен с источником тепла низкого температурного потенциала, согласно изобретению, снабжена четвертым теплообменником, включенным дополнительно по контуру между компрессором и вторым дросселем и соединенным с линией возврата первого теплоносителя от потребителя электроэнергии, тепла и холода и с четвертым насосом подачи первого теплоносителя, выход четвертого теплообменника соединен с потребителем электроэнергии, тепла и холода.
На рисунке приведена принципиальная схема бестопливной установки для централизованного комбинированного электро-, тепло- и хладоснабжения.
Бестопливная тригенерационная установка, включенная между газопроводом 1 высокого давления и газопроводом 2 низкого давления, разделенными первым дросселем 3, содержит линию 4 подачи газа на детандер с установленным на ней первым теплообменником 5 подогрева газа перед детандером, детандер 6, кинематически соединенный с электрическим генератором 7, образующим ДГА и соединенным с внешним потребителем электроэнергии, теплоты и холода 8 электрической связью 9 и электрической связью 10 - с двигателем 11, приводящим в движение компрессор 12, вход которого соединен с выходом испарителя 13, вход которого по хладагенту через второй дроссель 14 соединен с выходом первого теплообменника 5 подогрева газа перед детандером, источник тепла низкого температурного потенциала 15, линия 16 отвода газа после детандера ДГА в газопровод 2 низкого давления снабжена вторым теплообменником 17 уменьшения температуры хладоносителя потоком газа после детандера, в который первый хладоноситель поступает по линии 18 возврата первого хладоносителя от потребителя электроэнергии и холода и, отдав свое тепло потоку газа после детандера, первым насосом 19 подачи первого хладоносителя направляется потребителю электроэнергии, тепла и холода 8, при этом второй хладоноситель, поступающий в испаритель термотрансформатора по линии 20 возврата второго хладоносителя от потребителя электроэнергии и холода 8 в испаритель 13, отдав тепло хладагенту в испарителе 13, вторым насосом 21 из испарителя 13, направляется потребителю электроэнергии и холода 8, при этом часть хладагента может быть направлена в третий теплообменник 22 для испарения рабочего тела термотрансформатора, образованного компрессором 12, дросселем 14, теплообменником 22 и источником тепла низкого температурного потенциала 15, теплом низкого температурного потенциала, которое подается третьим насосом 23 подачи тепла низкого температурного потенциала в третий теплообменник 22 для испарения рабочего тела термотрэисформатора. Организовано производство и подача тепла потребителю по прямой линии подачи теплоносителя 28 и возврат теплоносителя по обратной линии теплоносителя 24, подача тепла потребителю обеспечивается за счет работы четвертого насоса 29, а подогрев теплоносителя для потребителя осуществляется от линии отвода тепла 25 после компрессора 12 через теплообменник 26 возврат теплоносителя по линии 27 в линию 30 подачи хладагента от теплообменника 5 к дросселю 14.
Установка работает следующим образом.
Транспортируемый природный газ, поступающий на станцию понижения давления по газопроводу 1 высокого давления, направляется частично в первый дроссель 3, частично по линии 4 - в теплообменник 5 подогрева газа перед детандером. После теплообменника 5 газ поступает в детандер 6, где часть энергии потока газа преобразуется в механическую энергию, которая, в свою очередь, преобразуется в электроэнергию в генераторе 7. В результате давление и температура потока газа уменьшаются. В зависимости от степени повышения температуры потока газа в теплообменнике 5, которая может регулироваться за счет изменения параметров греющей среды, поступающей в теплообменник, его температура на выходе из детандера при существующих параметрах в системе газоснабжения может принимать отрицательные значения (до минус 80 - минус 100°С), уровень которых достаточен для организации централизованного хладоснабжения практически любых промышленных и социально-бытовых объектов. После детандера 6 поток газа по линии 16 направляется в теплообменник 17, служащий для уменьшения температуры поступающего в него по линии 18 от потребителя электроэнергии и холода 8 первого хладоносителя, после чего поток газа поступает в газопровод 2 низкого давления. Первый хладоноситель, температура которого в теплообменнике 17 снижается до необходимого уровня, насосом 19 направляется потребителю электроэнергии тепла и холода 8. Выработанная генератором 7 электроэнергия частично по линии 9 передается потребителю электроэнергии и холода, а частично по линии 10 направляется на электродвигатель 11, служащий для привода компрессора 12 ПКТТ.
Подогрев потока газа в теплообменнике 5 производится за счет рабочего тела (хладагента) парокомпрессионного термотрансформатора, поступающего в него в парообразном состоянии из компрессора 12. Заметим, что теплообменник 5 служит также конденсатором парокомпрессионного термотрансформатора, в котором рабочее тело переходит из газообразной в жидкую фазу, отдавая тепло потоку транспортируемого газа.
После теплообменника 5 хладагент по линии 30 направляется во второй дроссель 14 термотрансформатора, где его давление снижается до необходимого по условиям эксплуатации уровня, после чего хладагент поступает в испаритель 13, в который поступает также поток второго хладоносителя от потребителя электроэнергии и холода по линии 20. Давление рабочего тела в испарителе 13 с помощью дросселирующего устройства 14 поддерживается на таком уровне, чтобы соответствующая ему температура насыщения была достаточно ниже температуры поступающего в испаритель 13 по линии 20 второго хладоносителя от потребителя электроэнергии и холода 8. Хладагент в испарителе 13 за счет тепла, отбираемого им от потока второго хладоносителя, переходит из жидкой фазы в газообразную и направляется в компрессор 12 термотрансформатора, где происходит его сжатие до необходимого давления, определяемого требуемым уровнем температур в теплообменнике 5. Из испарителя 13 второй хладоноситель насосом 21 направляется потребителю электроэнергии и холода 8. В тех случаях, когда суммарное тепло, предаваемое потоку хладагента вторым хладоносителем в испарителе 13 и выработанное при работе электродвигателя 11, недостаточно для повышения температуры потока хладагента до необходимого уровня, часть хладагента направляется в дополнительный теплообменник 22 для испарения рабочего тела термотрансформатора теплом низкого температурного потенциала. Испарение хладагента в дополнительном теплообменнике 22 происходит за счет потока тепла низкого температурного потенциала, подаваемого в дополнительный теплообменник 22 насосом 23, либо из природного источника тепла низкого температурного потенциала 15, либо из системы сбросного тепла промышленного предприятия.
Потоки первого и второго хладоносителей, направляемых потребителю электроэнергии и холода 8, могут иметь разные температурные уровни. Это определяется тем, что для их генерации используются различные агрегаты, а также возможностью индивидуального независимого регулирования в достаточно для практического использования широком диапазоне уровня температур хладоносителей. Производство и подача тепла потребителю по прямой линии подачи теплоносителя 28 при температуре до 90°С и возврат теплоносителя по обратной линии теплоносителя 24 при температуре до 70°С, подача тепла потребителю обеспечивается за счет работы четвертого насоса 29, а подогрев теплоносителя для потребителя осуществляется от линии отвода тепла 25 при температуре до 110°С после компрессора 12 через теплообменник 26 возврат теплоносителя по линии 27 при температуре до 70°С в линию 30 подачи хладагента от теплообменника 5 к дросселю 14.
название | год | авторы | номер документа |
---|---|---|---|
БЕСТОПЛИВНАЯ ТРИГЕНЕРАЦИОННАЯ УСТАНОВКА | 2018 |
|
RU2671074C1 |
УСТАНОВКА ДЛЯ КОМБИНИРОВАННОГО ЭЛЕКТРО- И ХЛАДОСНАБЖЕНИЯ НА ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ | 2017 |
|
RU2665752C1 |
Способ получения тепла и холода и установка для его осуществления | 1975 |
|
SU674690A3 |
БЕСТОПЛИВНАЯ ТРИГЕНЕРАЦИОННАЯ УСТАНОВКА | 2018 |
|
RU2693352C1 |
Газораспределительная станция с автономным бестопливным энергообеспечением и способ её работы | 2023 |
|
RU2820371C1 |
ДЕТАНДЕР-ГЕНЕРАТОРНЫЙ АГРЕГАТ | 2012 |
|
RU2528230C2 |
СПОСОБ ТЕПЛОХЛАДОСНАБЖЕНИЯ | 2023 |
|
RU2826330C1 |
Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (АБХМ) | 2017 |
|
RU2643878C1 |
НИЗКОТЕМПЕРАТУРНАЯ ХОЛОДИЛЬНАЯ МАШИНА | 2016 |
|
RU2617039C1 |
ХОЛОДИЛЬНАЯ УСТАНОВКА | 2000 |
|
RU2199706C2 |
Изобретение относится к теплоэнергетике. Между газопроводами высокого и низкого давления включены первый дроссель, детандер с электрогенератором, соединенным с потребителем и двигателем компрессора, первый теплообменник на линии подачи газа, компрессор, вход которого соединен с выходом испарителя, низкопотенциальный источник тепла. Вход испарителя через второй дроссель соединен с выходом первого теплообменника. Линия отвода газа после детандера в газопровод низкого давления снабжена вторым теплообменником, соединенным с линией возврата первого хладоносителя от потребителя, первым насосом подачи первого хладоносителя, выход которого соединен с потребителем, вторым насосом подачи второго хладоносителя из испарителя, третьим теплообменником, выход которого по хладагенту соединен с входом в компрессор, а вход по низкопотенциальному теплу соединен линией подачи с установленным на ней третьим насосом. Выход по низкопотенциальному теплу соединен с источником тепла. Четвертый теплообменник включен по контуру между компрессором и вторым дросселем и соединен с линией возврата первого теплоносителя от потребителя и с четвертым насосом подачи первого теплоносителя и выходом с потребителем. Техническим результатом является обеспечение потребителя электроэнергией, холодом и тепловой энергией без потребления топлива. 1 ил.
Бестопливная тригенерационная установка, включенная между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем, содержащая линию подачи газа на детандер, установленный на ней первый теплообменник, детандер, кинематически соединенный с электрическим генератором, соединенным первой электрической связью с потребителем электроэнергии, тепла и холода и второй электрической связью с двигателем, приводящим в движение компрессор, вход которого соединен с выходом испарителя, вход которого по хладагенту через второй дроссель соединен с выходом первого теплообменника, источник тепла низкого температурного потенциала, линию отвода газа после детандера в газопровод низкого давления, которая снабжена вторым теплообменником, установленным на линии отвода потока газа после детандера в газопровод низкого давления, соединенный с линией возврата первого хладоносителя от потребителя электроэнергии, тепла и холода, первым насосом подачи первого хладоносителя, выход которого соединен с потребителем электроэнергии, тепла и холода, вторым насосом подачи второго хладоносителя потребителю электроэнергии, тепла и холода из испарителя, выход которого соединен с потребителем электроэнергии, тепла и холода, третьим теплообменником, выход которого по хладагенту соединен с входом в компрессор, вход по теплу низкого температурного потенциала соединен линией подачи тепла низкого температурного потенциала с установленным на ней третьим насосом, а выход по теплу низкого температурного потенциала соединен с источником тепла низкого температурного потенциала, отличающаяся тем, что она снабжена четвертым теплообменником, включенным дополнительно по контуру между компрессором и вторым дросселем и соединенным с линией возврата первого теплоносителя от потребителя электроэнергии, тепла и холода и с четвертым насосом подачи первого теплоносителя, выход четвертого теплообменника соединен с потребителем электроэнергии, тепла и холода.
0 |
|
SU158931A1 | |
СПОСОБ КОМБИНИРОВАННОГО ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ, ТЕПЛА И ХОЛОДА | 2009 |
|
RU2399781C1 |
Теплообменник | 1950 |
|
SU88781A1 |
US 20090126381 A1, 21.05.2009 | |||
CN 104832289 A,12.08.2015. |
Авторы
Даты
2018-08-28—Публикация
2016-12-20—Подача