Энергонезависимый транспондер Российский патент 2018 года по МПК H01Q1/00 

Описание патента на изобретение RU2669203C1

Изобретение относится к области дистанционной идентификации и контроля охраняемых и особо охраняемых объектов с повышенными требованиями к обеспечению их безопасности.

Известны системы транспондеров на базе полупроводниковых больших интегральных микросхем (БИС), широко используемых, например, при работе с банкоматами. Однако такие системы не обеспечивают стойкости к таким дестабилизирующим факторам, как ионизирующее излучение.

Также известен транспондер, предлагаемый к использованию в автоматизированной системе контроля объектов [1]. Данное устройство содержит пьезоэлектрический преобразователь на поверхностных акустических волнах (ПАВ) и отражательную линию задержки (ОЛЗ), выполненные на одной подложке, и датчики контроля, подключенные к пьезоэлектрическому преобразователю. Существенным недостатком представленного транспондера является способ подключения датчиков контроля, которые подключаются к пьезоэлектрическому (входному) преобразователю и при срабатывании которых произойдет перераспределение энергии в ОЛЗ, что приведет к увеличению неравномерности амплитуд импульсов информационного сигнала и, в свою очередь, усложнит его обработку. Кроме того, количество датчиков будет ограничено количеством пьезоэлектрических преобразователей, которые в случае шунтирования снизят информационную емкость транспондера и снизят дальность передачи информации. Поскольку датчики подключаются непосредственно к пьезоэлектрическому (входному) преобразователю, конструкцию данного транспондера сложно реализовать без использования внешнего источника питания.

Наиболее близким по технической сущности к предлагаемому техническому решению является транспондер (прототип) [2, 3] для обнаружения и идентификации объекта.

Транспондер содержит твердотельный ретранслятор, выполненный на основе многоотводной линии задержки на ПАВ. Основным недостатком транспондера, выбранного в качестве прототипа, является недостаточная дальность передачи информации, поскольку данная линия задержки выполнена в однонаправленном варианте, что приводит к потере 50% энергии. Для регистрации контролируемых параметров отводы выходных встречно-штыревых преобразователей коммутируют внешними электрическими цепями, что приведет при срабатывании датчика к перераспределению энергии в отражательной линии задержки и приведет к увеличению неравномерности амплитуд импульсов информационного сигнала.

Техническим результатом предлагаемого изобретения является создание энергонезависимого транспондера с датчиками контроля состояния охраняемого объекта и увеличение дальности его работы, что позволит дистанционно получать информацию о его состоянии в процессе и после воздействия критических дестабилизирующих факторов.

Технический результат достигается тем, что в энергонезависимом транспондере, содержащем твердотельный ретранслятор, выполненный на основе линии задержки на поверхностных акустических волнах, и приемопередающую антенну, твердотельный ретранслятор выполнен на основе многоканальной отражательной линии задержки, включающей общий входной/выходной преобразователь и отражательные элементы. Отражательные элементы выполнены в виде встречно-штыревых преобразователей, к выводам которых подключены m пороговых или аналоговых датчиков контроля состояния охраняемого объекта. Входной/выходной преобразователь состоит из n двунаправленных встречно-штыревых преобразователей, подключенных наклонными потенциальными шинами. Входной/выходной преобразователь выполнен согласованным с внешним волновым трактом и соединен коаксиальным кабелем с приемопередающей антенной.

Технический результат достигается тем, что в энергонезависимом транспондере отражательные элементы выполнены в однонаправленном варианте.

Технический результат достигается тем, что в энергонезависимом транспондере перед отражательными элементами установлены дополнительные отражающие рефлекторы, представляющие собой металлизированную полоску, расположенные перпендикулярно направлению распространения поверхностных акустических волн.

На фиг. 1 представлена схема реализации предложенного энергонезависимого транспондера на основе многоканальной ОЛЗ на ПАВ, на которой обозначены: 1 - приемопередающая антенна, 2 - коаксиальный кабель, соединяющий приемопередающую антенну с входным/выходным преобразователем многоканальной ОЛЗ, 3 - входной/выходной преобразователь многоканальной ОЛЗ, 4 - отражательные элементы, выполненные в виде ВШП, 5 - отражательные рефлекторы, 6 - пороговые или аналоговые датчики, подключаемые к выводам ВШП, 7 - корпус транспондера, W - апертура ВШП.

На фиг. 2 представлен информационный сигнал, в котором 8, 9 - импульсы, отвечающие за регистрацию воздействовавших на объект дестабилизирующих факторов (амплитуды импульсов равны логическому «0»), а остальные импульсы являются идентифицирующими данный объект.

На фиг. 3 представлен информационный сигнал, в котором 10, 11 - импульсы, сигнализирующие о регистрации датчиками фактов превышения пороговых значений дестабилизирующих факторов (амплитуды импульсов равны логической «1»).

Транспондер работает следующим образом.

Транспондер использует энергию инициирующего радиоимпульса для формирования информационного кодированного сигнала с контролируемого объекта. Приемопередающая антенна транспондера 1 принимает короткий инициирующий радиоимпульс, который по коаксиальному кабелю 2 передается на входной/выходной преобразователь 3, преобразующий его в поверхностную акустическую волну, распространяющуюся от него в обе стороны, каждая в своем акустическом канале. ПАВ, достигнув отражательных элементов 4, 5, отражается от них и достигает входного/выходного преобразователя 3, который преобразует ее в ответный радиоимпульс, содержащий информационную посылку, включающую в себя идентификационный номер охраняемого объекта и информацию о состоянии пороговых или аналоговых датчиков 6. Входной/выходной преобразователь 3, отражательные элементы в виде ВШП 4, отражательные рефлекторы 5 и датчики 6 расположены в корпусе транспондера 7. Пороговые или аналоговые датчики 6 могут размещаться внутри охраняемого объекта, в местах воздействия критических нагрузок или в местах особого контроля изменений физических параметров и находиться как внутри корпуса транспондера 7, так и вне его. Коэффициент металлизации отражательных элементов 4 подбирается таким образом, что при срабатывании датчика происходит замыкание (или размыкание) соответствующего ВШП, вследствие чего изменяется коэффициент отражения ПАВ до минимального (или максимального) значения, тем самым изменяются амплитуды импульсов 8, 9, по изменению которых (импульсы 10, 11) можно сделать выводы о состоянии охраняемого объекта.

Для увеличения дальности работы системы дистанционной идентификации (передачи информационного сигнала) в предлагаемом транспондере используется амплитудная кодировка информационного сигнала. Уменьшение затухания импульсов информационного сигнала является важной технической задачей. Как видно из уравнения радиолокации

где D - дальность идентификации, λ - рабочая длина волны, К1 - коэффициент усиления антенны передатчика, К2 - коэффициент усиления антенны транспондера, Рпер - импульсная мощность излучения передатчика, Рпр - предельная чувствительность приемника, m - коэффициент различимости, выбираемый из условия обеспечения вероятности правильной идентификации, σолз - затухание импульсов информационного сигнала, с уменьшением затухания информационного сигнала (т.е. с увеличением амплитуд импульсов) увеличивается дальность передачи информации транспондером.

Дополнительным преимуществом предлагаемого изобретения является возможность согласования входного/выходного преобразователя с внешним волновым трактом на стадии проектирования топологии многоканальной ОЛЗ транспондера, что позволяет отказаться от использования согласующих схем и элементов и, таким образом, повышает стойкость изделия к дестабилизирующим факторам, упрощает конструкцию, снижает его стоимость и существенно увеличивает дальность идентификации объекта с установленным на нем (или в нем) транспондером.

Как было показано в работе [4], наиболее эффективной схемой подключения многоканальной ОЛЗ является последовательно-параллельное соединение единичных ВШП входного/выходного преобразователя при сравнительно небольшом времени задержки информационного сигнала (от 2 до 50 мкс). Это объясняется тем, что активная составляющая сопротивления излучения на центральной частоте имеет вид [5]

где Gac) - активная составляющая проводимости излучения, ωс - центральная частота, Ct - статическая емкость единичного ВШП.

Статическая емкость единичного ВШП вычисляется по формуле:

где γ=1, 4/3, 2 для Se=2, 3, 4 соответственно - число электродов, приходящихся на один период; , а/р - коэффициент металлизации; Np - число пар электродов; W - апертура ВШП; Pν(cosΔ) - полином Лежандра, v=-1/Se; εp - диэлектрическая проницаемость пьезоэлектрика.

Как было показано в работе [6], для наилучшего преобразования инициирующего радиоимпульса в ПАВ апертура W единичных ВШП входного/выходного преобразователя должна удовлетворять условию:

где λ - длина ПАВ, х - расстояние от ВШП входного/выходного преобразователя до самого дальнего отражательного элемента, β - параметр анизотропии.

Таким образом, значение величины Rac) может быть скорректировано схемой включения единичных ВШП входного/выходного преобразователя и подбором их оптимальной апертуры W, что позволит отказаться от использования в транспондере согласующих схем и, в то же время, уменьшить затухание амплитуд импульсов информационного сигнала.

Выполнение потенциальных шин входного/выходного преобразователя с наклоном позволяет часть энергии ПАВ, отраженной от них при ее прохождении по акустическому каналу, отклонить от направления чистой моды (совпадающего с кристаллографической осью пьезоэлектрической подложки), исключая, таким образом, дополнительные паразитные переотражения ПАВ, что позволяет упростить обработку информационного сигнала, формируемого транспондером.

Отражательные ВШП, выполненные в однонаправленном варианте, наиболее эффективно отражают пришедшую ПАВ [7], что позволяет повысить амплитуды импульсов информационного сигнала.

В предлагаемом транспондере максимальное количество контролируемых параметров (число устанавливаемых датчиков контроля) равно удвоенному числу единичных ВШП, образующих входной/выходной преобразователь. Кроме того, информационную емкость транспондера можно увеличить, располагая перед отражательными элементами, выполненными в виде ВШП, дополнительных отражательных рефлекторов, а кодирование информационного сигнала можно осуществлять как топологическим способом, т.е. включением или исключением отражательного рефлектора из топологии многоканальной ОЛЗ на ПАВ, так и шунтированием отражательных элементов.

В результате использования предлагаемых технических решений при создании энергонезависимого транспондера на основе многоканальной ОЛЗ на ПАВ можно добиться дальности идентификации, превышающей 15 м, полученное значение дальности идентификации позволяет дистанционно получать информацию о состоянии охраняемого объекта в процессе воздействия на него критических дестабилизирующих факторов (например, в процессе пожара).

Внедрение предлагаемого транспондера упростит и повысит информативность о состоянии контролируемого объекта в случае возникновения нештатных ситуаций.

Литература

1. Патент №2495489 МПК G06K 7/00 (2006.01), G08B 25/10 (2006.01). Автоматизированная система дистанционного контроля объектов в стационарных хранилищах / Вережанский В.Ю., Князев И.А., Костюкевич О.Н., Юферев В.И. // Опубл. 10.10.2013 Бюл. №28.

2. Патент №2133482 РФ МПК G01S 13/00. Транспондер / Бахирев Г.Г., Киселев В.К., Поздеев А.Н., Тремасов Н.З., Яковлев В.В. // Опубл. 20.07.1999.

3. Патент №2126980 РФ МПК G01S 13/75, 13/76. Способ обнаружения и идентификации объекта / Бахирев Г.Г., Киселев В.К., Поздеев А.Н., Тремасов Н.З., Яковлев В.В. // Опубл. 27.02.1999.

4. Патент №2610415 МПК Н03Н 9/30 (2006.01). Многоканальная отражательная линия задержки / Дорохов С.П., Салов А.С. // Опубл. 10.02.2017. Бюл. №4.

5. Д. Морган «Устройства обработки сигналов на поверхностных акустических волнах», М.: «Радио и связь», 1990.

6. С.П. Дорохов, В.А. Козлов. Влияние анизотропии кристалла 1 лМЮз на изменение фазовой скорости ПАВ / Физика и технические приложения волновых процессов: Тезисы докладов XIV Международной научно-технической конференции: приложение к журналу «Физика волновых процессов и радиотехнические системы» / Под ред. В.А. Неганова. - Казань: ООО «16ПРИНТ», 2016.- 123 с.

7. Карапетьян Г.Я. Исследования однонаправленных и слабоаподизованных встречно-штыревых преобразователей поверхностных акустических волн и разработка устройств частотной селекции на их основе. Диссертация кандидата технических наук: 05.27.01 Великий Новгород, 2011. Ссылка на автореферат: http://www.dissercat.com/content/issledovaniya-odnonapravlennykh-i-slaboapodizovannykh-vstrechno-shtvrevykh-preobrazovatelei-.

Похожие патенты RU2669203C1

название год авторы номер документа
РАДИОМЕТКА НА ОСНОВЕ ЛИНИИ ЗАДЕРЖКИ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2019
  • Андрейчев Сергей Сергеевич
  • Дорохов Сергей Петрович
  • Койгеров Алексей Сергеевич
  • Реут Владимир Ростиславович
  • Салов Алексей Сергеевич
RU2701100C1
ОТРАЖАТЕЛЬНАЯ ЛИНИЯ ЗАДЕРЖКИ 2014
  • Князев Игорь Алексеевич
  • Дорохов Сергей Петрович
  • Салов Алексей Сергеевич
RU2567186C1
ТРАНСПОНДЕР 1997
  • Бахирев Г.Г.
  • Киселев В.К.
  • Поздеев А.Н.
  • Тремасов Н.З.
  • Яковлев В.В.
RU2133482C1
МНОГОКАНАЛЬНАЯ ОТРАЖАТЕЛЬНАЯ ЛИНИЯ ЗАДЕРЖКИ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2012
  • Князев Игорь Алексеевич
  • Салов Алексей Сергеевич
  • Дорохов Сергей Петрович
RU2522886C2
Многоканальная отражательная линия задержки 2015
  • Дорохов Сергей Петрович
  • Салов Алексей Сергеевич
RU2610415C1
МНОГОКАНАЛЬНАЯ ОТРАЖАТЕЛЬНАЯ ЛИНИЯ ЗАДЕРЖКИ НА ПАВ И СПОСОБ КОДИРОВАНИЯ ИНФОРМАЦИОННОГО СИГНАЛА 2014
  • Князев Игорь Алексеевич
  • Дорохов Сергей Петрович
  • Салов Алексей Сергеевич
RU2576504C1
СИСТЕМА РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Мельников Владимир Александрович
  • Петрушин Владимир Николаевич
  • Калинин Владимир Анатольевич
RU2422848C1
СПОСОБ ДИСТАНЦИОННОЙ РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ И КОНТРОЛЯ СОСТОЯНИЯ ОБЪЕКТА И СИСТЕМА, ОСУЩЕСТВЛЯЮЩАЯ ДАННЫЙ СПОСОБ 2022
  • Дорохов Сергей Петрович
  • Салов Алексей Сергеевич
  • Бадыгеев Айрат Арслангалиевич
  • Пономарева Елена Петровна
  • Кужель Михаил Петрович
RU2789076C1
Система измерения температуры шин электрических шкафов 2020
  • Усков Иван Валерьевич
  • Кронидов Тимофей Вячеславович
  • Строганов Кирилл Александрович
  • Люлин Борис Николаевич
  • Белов Юрий Владимирович
  • Киселёв Владислав Павлович
  • Савчук Александр Дмитриевич
RU2748868C1
СИСТЕМА ИЗМЕРЕНИЙ И ДОЛГОВРЕМЕННОГО КОНТРОЛЯ СОСТОЯНИЯ КОНСТРУКЦИИ ЗДАНИЯ ИЛИ ИНЖЕНЕРНО-СТРОИТЕЛЬНОГО СООРУЖЕНИЯ 2015
  • Прохорович Владимир Евгеньевич
  • Дикарев Виктор Иванович
  • Меньшиков Сергей Станиславович
  • Вдовенко Сергей Владимирович
RU2582233C1

Иллюстрации к изобретению RU 2 669 203 C1

Реферат патента 2018 года Энергонезависимый транспондер

Изобретение относится к области дистанционной идентификации и контроля охраняемых и особо охраняемых объектов с повышенными требованиями к обеспечению их безопасности. Техническим результатом является создание энергонезависимого транспондера с датчиками контроля состояния охраняемого объекта и увеличение дальности его работы. Для этого энергонезависимый транспондер содержит приемопередающую антенну, соединенную с линией задержки на поверхностных акустических волнах, общий входной/выходной преобразователь и отражательные элементы. Отражательные элементы выполнены в виде встречно-штыревых преобразователей, к выводам которых подключены m пороговых или аналоговых датчиков контроля состояния охраняемого объекта. Входной/выходной преобразователь состоит из n двунаправленных встречно-штыревых преобразователей, подключенных наклонными потенциальными шинами. Входной/выходной преобразователь выполнен согласованным с внешним волновым трактом и соединен коаксиальным кабелем с приемопередающей антенной. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 669 203 C1

1. Энергонезависимый транспондер, содержащий приемопередающую антенну, соединенную с линией задержки на поверхностных акустических волнах, включающей входной/выходной преобразователь и отражательные элементы, выполненные в виде встречно-штыревых преобразователей, к выводам которых подключены m пороговых или аналоговых датчиков контроля состояния охраняемого объекта, отличающийся тем, что входной/выходной преобразователь состоит из n двунаправленных встречно-штыревых преобразователей, соединенных между собой и подключенных к наклонным потенциальным шинам, кроме того, входной/выходной преобразователь выполнен согласованным с внешним волновым трактом.

2. Энергонезависимый транспондер, по п. 1, отличающийся тем, что отражательные элементы выполнены в однонаправленном варианте.

3. Энергонезависимый транспондер по п. 1, отличающийся тем, что перед отражательными элементами установлены дополнительные отражающие рефлекторы, представляющие собой металлизированную полоску, расположенные перпендикулярно направлению распространения поверхностных акустических волн.

Документы, цитированные в отчете о поиске Патент 2018 года RU2669203C1

ТРАНСПОНДЕР 1997
  • Бахирев Г.Г.
  • Киселев В.К.
  • Поздеев А.Н.
  • Тремасов Н.З.
  • Яковлев В.В.
RU2133482C1
АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДИСТАНЦИОННОГО КОНТРОЛЯ ОБЪЕКТОВ В СТАЦИОНАРНЫХ ХРАНИЛИЩАХ 2012
  • Вережанский Виктор Юлианович
  • Князев Игорь Алексеевич
  • Костюкевич Олег Николаевич
  • Юферев Владимир Иванович
RU2495489C1
УСТРОЙСТВО КОДИРОВАНИЯ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ ДЛЯ ПАССИВНОГО ТРАНСПОНДЕРА 2004
  • Забузов Сергей Александрович
  • Ларионов Сергей Михайлович
  • Михеев Владимир Григорьевич
  • Головин Сергей Анатольевич
  • Тюлин Андрей Евгеньевич
  • Тикменов Василий Николаевич
  • Марков Николай Яковлевич
RU2270517C1
СПОСОБ ОБНАРУЖЕНИЯ И ДИСТАНЦИОННОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ, СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И ТРАНСПОНДЕР 2006
  • Отраднов Кирилл Олегович
  • Подхалюзин Вадим Евгеньевич
  • Коваленко Владимир Гаврилович
RU2461018C2
Экономайзер 0
  • Каблиц Р.К.
SU94A1

RU 2 669 203 C1

Авторы

Дорохов Сергей Петрович

Даты

2018-10-09Публикация

2017-08-14Подача