Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС).
В настоящее время в составе КА все более широко используются солнечные батареи на основе арсенид-галлиевых фотопреобразователей (например, http://solarb.ru/arsenid-galievye-solnechnye-batarei). Поэтому задача обеспечения оптимальной проверки качества ФП на различных этапах изготовления солнечных батарей КА весьма актуальна.
Известен способ тестирования ФП (чипов каскадных фотопреобразователей) на основе Al-Ga-In-As-P с помощью электролюминесцентных измерений (Thomas Kirchartz, Anke Helbig, Martin Hermle, Uwe Rau и Andreas W. Bett "23rd Europian Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain). Известный способ-прототип включает в себя пропускание тока через исследуемый чип для возбуждения спектра электролюминесценции (ЭЛ) и исследование этого спектра с помощью Ge-приемника, объединенного с монохроматором. Теоретически показано, как, используя теорему электрооптической взаимности, которая описывает связь между квантовой эффективностью СЭ и интенсивностью спектра ЭЛ, можно рассчитать индивидуальную вольт-амперную характеристику чипа и, соответственно, судить о качестве этого чипа ФП.
Недостатком известного способа является то, что здесь использован классический метод возбуждение спектра ЭЛ - пропускание тока через исследуемый образец, то есть, применена контактная система со всеми ее недостатками.
Известно устройство для тестирования чипов каскадных фотопреобразователей на основе Al-Ga-In-As-P (Thomas Kirchartz, Anke Helbig, Martin Hermle, Uwe Rau и Andreas W. Bett "23rd Europian Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain). Устройство состоит из источника постоянного тока с пределом регулировки (0,1÷150) мА, оптического модулятора излучения спектра ЭЛ образца ФП, монохроматора в диапазоне (600÷1800) нм, германиевого приемника излучения, электронного селективного усилителя, синхронного с частотой модуляции спектра ЭЛ, и измерителя электрического сигнала.
Недостатком известного устройства является контактная система для возбуждения спектра ЭЛ исследуемого образца ФП, что при стандартных размерах чипов порядка 2×2 мм2 требует прецизионных точных механических контактов, которые требуют постоянного внимания.
Наиболее близким к заявляемому техническому решению по совокупности существенных признаков являются «Способ тестирования чипов каскадных фотопреобразователей на основе соединений Al-Ga-In-As-P, включающий облучение участка поверхности тестируемого чипа лазерным излучением с длиной волны (0,40÷0,55) мкм, направление возникающего в необлученном участке чипа фотоэлектролюминесцентного излучения на фотоприемник, имеющий фоточувствительность к излучению с длиной волны, более 0,6 мкм, измерение интенсивности фотоэлектролюминесцентного излучения и определение качества чипа путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого чипа с интенсивностью фотоэлектролюминесцентного излучения эталонного чипа каскадного фотопреобразователя на основе соединений Al-Ga-In-As-Р» и «Устройство для тестирования чипов каскадных фотопреобразователей на основе соединений Al-Ga-In-As-P, включающее лазер с длиной волны излучения 0,40÷0,55 мкм, линзу, фокусирующую излучение лазера на платформу для размещения матрицы тестируемых чипов, установленную на основании с возможностью его вращения вокруг вертикальной оси и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, объектив, оптический фильтр, пропускающий излучение с длинами волн более 0,6 мкм, и фотоприемник, фоточувствительный к излучению с длинами волн более 0,6 мкм, установленные на одной оптической оси, и экран, препятствующий попаданию фотолюминесцентного излучения из облучаемого участка чипа в объектив, при этом фотоприемник подключен через усилитель к контроллеру с блоком памяти» (патент №2384838, RU).
Недостатком известных способа и устройства является низкая технологичность при использовании в процессе изготовления КА, которая заключается в исследовании отдельных экземпляров ФП.
Задачей заявляемого изобретения является повышение технологических возможностей тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА.
Поставленная задача в части способа решается тем, что при облучении участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны 0,40÷0,55 мкм, контроле возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определении качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя, в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ.
Поставленная задача в части устройства решается тем, что в устройстве, включающем лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, в качестве фотоприемника используют цифровой фотоаппарат, кроме того, дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором.
Действительно, использование цифрового фотоаппарата в связке с ПЭВМ позволяет проводить запоминание люминесцирующей картины различных этапов наземного жизненного цикла каждого конкретного ФП солнечной батареи. При этом любые влияния на целостность кристалла ФП будут зафиксированы и по параметру интенсивности излучения сравнены с первоначальным (эталонным) значением, полученным при первой проверке данного ФП. В дальнейшем результаты проверок ФП (фотолюминесцирующих картин), при необходимости, могут быть подвергнуты более глубокому анализу. Таким образом, создается индивидуальный паспорт для каждого ФП входящего в состав БС. Цифровой фотоаппарат дает возможность беспристрастной фиксации момента измерения, и проведения съемки в ультрафиолетовом и инфракрасном спектрах. Все это повышает технологические возможности способа тестирования арсенид-галлиевых ФП в составе солнечных батарей.
Использование системы позиционирования в виде манипулятора перемещающего фотокамеру с лазером в плоскости по заранее заданному алгоритму позволяет использовать данное устройство для широкого спектра БС на основе арсенид-галлиевых фотопреобразователей. Что также повышает технологические возможности.
На фиг. 1 изображены БС и устройство для тестирования арсенид-галлиевых фотопреобразователей, где:
1 - платформа, на которой установлены фотоаппарат и лазерный излучатель;
2 - манипулятор, перемещающий платформу по заданной программе от ПЭВМ;
3 - ПЭВМ, связанная с манипулятором, с лазерным излучателем и фотоаппаратом;
4 - проверяемая БС;
5 - рама для установки БС.
Перед объективом фотоаппарата установлена перегородка, закрывающая часть изображения фотопреобразователя, куда падает луч от лазерного излучателя (на рисунке не показано).
Устройство работает следующим образом. По сигналам с ПЭВМ манипулятор позиционирует платформу с фотоаппаратом и лазерным излучателем напротив проверяемого ФП БС. Включается лазерный излучатель, фотоаппарат фотографирует ФП в момент его люминесценции, отключается лазерный излучатель. Изображение с фотоаппарата передается в ПЭВМ для обработки. Анализируется интенсивность люминесценции проверяемого ФП и сравнивается с интенсивностью эталонного ФП.
Таким образом, заявляемый способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации позволяют повысить технологические возможности известных способа и устройства тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕСТИРОВАНИЯ ЧИПОВ КАСКАДНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ НА ОСНОВЕ СОЕДИНЕНИЙ Al-Ga-In-As-P И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2384838C1 |
УСТАНОВКА ДЛЯ ТЕСТИРОВАНИЯ ЧИПОВ КАСКАДНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ НА ОСНОВЕ СОЕДИНЕНИЙ Al-Ga-In-As-P | 2009 |
|
RU2391648C1 |
СПОСОБ ТЕСТИРОВАНИЯ СВЕТОВОДОВ С НЕДОСТУПНЫМ ТОРЦОМ ВВОДА-ВЫВОДА ИЗЛУЧЕНИЯ | 2011 |
|
RU2477847C1 |
КОМБИНИРОВАННАЯ СОЛНЕЧНО-ЭНЕРГЕТИЧЕСКАЯ СТАНЦИЯ | 2008 |
|
RU2382953C1 |
Способ визуализированного тестирования инфракрасных болометрических систем | 2020 |
|
RU2755004C1 |
СПОСОБ ИЗМЕРЕНИЯ ИНТЕНСИВНОСТИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ СОЛНЦА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2184354C1 |
СПОСОБ ИССЛЕДОВАНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ВОСПРИИМЧИВОСТИ ФОТОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ В СОСТАВЕ СОЛНЕЧНЫХ БАТАРЕЙ К ОПТИЧЕСКОМУ ИЗЛУЧЕНИЮ | 2013 |
|
RU2565331C2 |
ДВУСТОРОННИЙ СОЛНЕЧНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ (ВАРИАНТЫ) | 2013 |
|
RU2531768C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ | 1993 |
|
RU2094757C1 |
ТАНДЕМНЫЙ СОЛНЕЧНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ | 2013 |
|
RU2531767C1 |
Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС). Заявленный способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей включает облучение участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны (0,40÷0,55) мкм, контроль возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определение качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя. Заявленное устройство для тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей для реализации указанного выше способа включает лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях. Причем в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ, для чего дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором. Технический результат - повышение технологических возможностей тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА. 2 н.п. ф-лы, 1 ил.
1. Способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей, включающий облучение участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны 0,40÷0,55 мкм, контроль возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определение качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя, отличающийся тем, что в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ.
2. Устройство для тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей, включающее лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, отличающееся тем, что в качестве фотоприемника используют цифровой фотоаппарат, кроме того, дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором.
0 |
|
SU153920A1 | |
СПОСОБ ТЕСТИРОВАНИЯ ЧИПОВ КАСКАДНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ НА ОСНОВЕ СОЕДИНЕНИЙ Al-Ga-In-As-P И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2384838C1 |
УСТАНОВКА ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ ФОТОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ | 2008 |
|
RU2352953C1 |
US 20050252545 A1, 17.11.2005. |
Авторы
Даты
2018-11-01—Публикация
2017-10-05—Подача