Способ тестирования арсенид-галиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации Российский патент 2018 года по МПК G01N21/88 B64G1/00 

Описание патента на изобретение RU2671546C1

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС).

В настоящее время в составе КА все более широко используются солнечные батареи на основе арсенид-галлиевых фотопреобразователей (например, http://solarb.ru/arsenid-galievye-solnechnye-batarei). Поэтому задача обеспечения оптимальной проверки качества ФП на различных этапах изготовления солнечных батарей КА весьма актуальна.

Известен способ тестирования ФП (чипов каскадных фотопреобразователей) на основе Al-Ga-In-As-P с помощью электролюминесцентных измерений (Thomas Kirchartz, Anke Helbig, Martin Hermle, Uwe Rau и Andreas W. Bett "23rd Europian Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain). Известный способ-прототип включает в себя пропускание тока через исследуемый чип для возбуждения спектра электролюминесценции (ЭЛ) и исследование этого спектра с помощью Ge-приемника, объединенного с монохроматором. Теоретически показано, как, используя теорему электрооптической взаимности, которая описывает связь между квантовой эффективностью СЭ и интенсивностью спектра ЭЛ, можно рассчитать индивидуальную вольт-амперную характеристику чипа и, соответственно, судить о качестве этого чипа ФП.

Недостатком известного способа является то, что здесь использован классический метод возбуждение спектра ЭЛ - пропускание тока через исследуемый образец, то есть, применена контактная система со всеми ее недостатками.

Известно устройство для тестирования чипов каскадных фотопреобразователей на основе Al-Ga-In-As-P (Thomas Kirchartz, Anke Helbig, Martin Hermle, Uwe Rau и Andreas W. Bett "23rd Europian Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain). Устройство состоит из источника постоянного тока с пределом регулировки (0,1÷150) мА, оптического модулятора излучения спектра ЭЛ образца ФП, монохроматора в диапазоне (600÷1800) нм, германиевого приемника излучения, электронного селективного усилителя, синхронного с частотой модуляции спектра ЭЛ, и измерителя электрического сигнала.

Недостатком известного устройства является контактная система для возбуждения спектра ЭЛ исследуемого образца ФП, что при стандартных размерах чипов порядка 2×2 мм2 требует прецизионных точных механических контактов, которые требуют постоянного внимания.

Наиболее близким к заявляемому техническому решению по совокупности существенных признаков являются «Способ тестирования чипов каскадных фотопреобразователей на основе соединений Al-Ga-In-As-P, включающий облучение участка поверхности тестируемого чипа лазерным излучением с длиной волны (0,40÷0,55) мкм, направление возникающего в необлученном участке чипа фотоэлектролюминесцентного излучения на фотоприемник, имеющий фоточувствительность к излучению с длиной волны, более 0,6 мкм, измерение интенсивности фотоэлектролюминесцентного излучения и определение качества чипа путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого чипа с интенсивностью фотоэлектролюминесцентного излучения эталонного чипа каскадного фотопреобразователя на основе соединений Al-Ga-In-As-Р» и «Устройство для тестирования чипов каскадных фотопреобразователей на основе соединений Al-Ga-In-As-P, включающее лазер с длиной волны излучения 0,40÷0,55 мкм, линзу, фокусирующую излучение лазера на платформу для размещения матрицы тестируемых чипов, установленную на основании с возможностью его вращения вокруг вертикальной оси и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, объектив, оптический фильтр, пропускающий излучение с длинами волн более 0,6 мкм, и фотоприемник, фоточувствительный к излучению с длинами волн более 0,6 мкм, установленные на одной оптической оси, и экран, препятствующий попаданию фотолюминесцентного излучения из облучаемого участка чипа в объектив, при этом фотоприемник подключен через усилитель к контроллеру с блоком памяти» (патент №2384838, RU).

Недостатком известных способа и устройства является низкая технологичность при использовании в процессе изготовления КА, которая заключается в исследовании отдельных экземпляров ФП.

Задачей заявляемого изобретения является повышение технологических возможностей тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА.

Поставленная задача в части способа решается тем, что при облучении участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны 0,40÷0,55 мкм, контроле возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определении качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя, в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ.

Поставленная задача в части устройства решается тем, что в устройстве, включающем лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, в качестве фотоприемника используют цифровой фотоаппарат, кроме того, дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором.

Действительно, использование цифрового фотоаппарата в связке с ПЭВМ позволяет проводить запоминание люминесцирующей картины различных этапов наземного жизненного цикла каждого конкретного ФП солнечной батареи. При этом любые влияния на целостность кристалла ФП будут зафиксированы и по параметру интенсивности излучения сравнены с первоначальным (эталонным) значением, полученным при первой проверке данного ФП. В дальнейшем результаты проверок ФП (фотолюминесцирующих картин), при необходимости, могут быть подвергнуты более глубокому анализу. Таким образом, создается индивидуальный паспорт для каждого ФП входящего в состав БС. Цифровой фотоаппарат дает возможность беспристрастной фиксации момента измерения, и проведения съемки в ультрафиолетовом и инфракрасном спектрах. Все это повышает технологические возможности способа тестирования арсенид-галлиевых ФП в составе солнечных батарей.

Использование системы позиционирования в виде манипулятора перемещающего фотокамеру с лазером в плоскости по заранее заданному алгоритму позволяет использовать данное устройство для широкого спектра БС на основе арсенид-галлиевых фотопреобразователей. Что также повышает технологические возможности.

На фиг. 1 изображены БС и устройство для тестирования арсенид-галлиевых фотопреобразователей, где:

1 - платформа, на которой установлены фотоаппарат и лазерный излучатель;

2 - манипулятор, перемещающий платформу по заданной программе от ПЭВМ;

3 - ПЭВМ, связанная с манипулятором, с лазерным излучателем и фотоаппаратом;

4 - проверяемая БС;

5 - рама для установки БС.

Перед объективом фотоаппарата установлена перегородка, закрывающая часть изображения фотопреобразователя, куда падает луч от лазерного излучателя (на рисунке не показано).

Устройство работает следующим образом. По сигналам с ПЭВМ манипулятор позиционирует платформу с фотоаппаратом и лазерным излучателем напротив проверяемого ФП БС. Включается лазерный излучатель, фотоаппарат фотографирует ФП в момент его люминесценции, отключается лазерный излучатель. Изображение с фотоаппарата передается в ПЭВМ для обработки. Анализируется интенсивность люминесценции проверяемого ФП и сравнивается с интенсивностью эталонного ФП.

Таким образом, заявляемый способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации позволяют повысить технологические возможности известных способа и устройства тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА.

Похожие патенты RU2671546C1

название год авторы номер документа
СПОСОБ ТЕСТИРОВАНИЯ ЧИПОВ КАСКАДНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ НА ОСНОВЕ СОЕДИНЕНИЙ Al-Ga-In-As-P И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Андреев Вячеслав Михайлович
  • Румянцев Валерий Дмитриевич
  • Ащеулов Юрий Владимирович
  • Малевский Дмитрий Андреевич
RU2384838C1
УСТАНОВКА ДЛЯ ТЕСТИРОВАНИЯ ЧИПОВ КАСКАДНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ НА ОСНОВЕ СОЕДИНЕНИЙ Al-Ga-In-As-P 2009
  • Андреев Вячеслав Михайлович
  • Румянцев Валерий Дмитриевич
  • Ащеулов Юрий Владимирович
  • Малевский Дмитрий Андреевич
RU2391648C1
СПОСОБ ТЕСТИРОВАНИЯ СВЕТОВОДОВ С НЕДОСТУПНЫМ ТОРЦОМ ВВОДА-ВЫВОДА ИЗЛУЧЕНИЯ 2011
  • Баранов Виктор Константинович
  • Вережанский Виктор Юлианович
  • Гаранин Сергей Григорьевич
  • Голубинский Анатолий Григорьевич
  • Ириничев Дмитрий Альбертович
  • Масленникова Татьяна Александровна
RU2477847C1
КОМБИНИРОВАННАЯ СОЛНЕЧНО-ЭНЕРГЕТИЧЕСКАЯ СТАНЦИЯ 2008
  • Симакин Виктор Васильевич
  • Тюхов Игорь Иванович
  • Алексеенко Владимир Николаевич
  • Смирнов Александр Владимирович
  • Захаров Николай Михайлович
  • Тюхов Сергей Игоревич
RU2382953C1
Способ визуализированного тестирования инфракрасных болометрических систем 2020
  • Барышников Валентин Иванович
RU2755004C1
СПОСОБ ИЗМЕРЕНИЯ ИНТЕНСИВНОСТИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ СОЛНЦА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Квасков В.Б.
  • Шевяков А.В.
RU2184354C1
СПОСОБ ИССЛЕДОВАНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ВОСПРИИМЧИВОСТИ ФОТОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ В СОСТАВЕ СОЛНЕЧНЫХ БАТАРЕЙ К ОПТИЧЕСКОМУ ИЗЛУЧЕНИЮ 2013
  • Янчур Сергей Викторович
  • Дрондин Алексей Викторович
  • Каленков Георгий Сергеевич
  • Подсосный Виктор Андреевич
RU2565331C2
ДВУСТОРОННИЙ СОЛНЕЧНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ (ВАРИАНТЫ) 2013
  • Варфоломеев Сергей Дмитриевич
  • Тодинова Анна Вячеславовна
  • Шевалеевский Олег Игоревич
RU2531768C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ 1993
  • Котликов Евгений Николаевич
  • Кузнецов Юрий Алексеевич
  • Шестун Андрей Николаевич
RU2094757C1
ТАНДЕМНЫЙ СОЛНЕЧНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ 2013
  • Варфоломеев Сергей Дмитриевич
  • Ларина Людмила Леонидовна
  • Шевалеевский Олег Игоревич
RU2531767C1

Иллюстрации к изобретению RU 2 671 546 C1

Реферат патента 2018 года Способ тестирования арсенид-галиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС). Заявленный способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей включает облучение участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны (0,40÷0,55) мкм, контроль возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определение качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя. Заявленное устройство для тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей для реализации указанного выше способа включает лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях. Причем в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ, для чего дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором. Технический результат - повышение технологических возможностей тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 671 546 C1

1. Способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей, включающий облучение участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны 0,40÷0,55 мкм, контроль возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определение качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя, отличающийся тем, что в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ.

2. Устройство для тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей, включающее лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, отличающееся тем, что в качестве фотоприемника используют цифровой фотоаппарат, кроме того, дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором.

Документы, цитированные в отчете о поиске Патент 2018 года RU2671546C1

0
SU153920A1
СПОСОБ ТЕСТИРОВАНИЯ ЧИПОВ КАСКАДНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ НА ОСНОВЕ СОЕДИНЕНИЙ Al-Ga-In-As-P И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Андреев Вячеслав Михайлович
  • Румянцев Валерий Дмитриевич
  • Ащеулов Юрий Владимирович
  • Малевский Дмитрий Андреевич
RU2384838C1
УСТАНОВКА ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ ФОТОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ 2008
  • Нагайкин Анатолий Семенович
  • Летуновский Олег Андреевич
  • Пересечанский Владимир Николаевич
  • Лысков Сергей Николаевич
  • Соловьев Геннадий Владимирович
  • Внуков Евгений Васильевич
  • Холодов Евгений Валентинович
  • Гура Алексей Павлович
  • Касаткин Виктор Васильевич
  • Шкаранда Кузьма Владимирович
RU2352953C1
US 20050252545 A1, 17.11.2005.

RU 2 671 546 C1

Авторы

Тютюнин Тимофей Викторович

Алисеенко Юрий Владимирович

Ильин Александр Николаевич

Воронцова Евгения Олеговна

Даты

2018-11-01Публикация

2017-10-05Подача