Анализатор состава природного газа Российский патент 2018 года по МПК G01N21/65 G01J3/44 

Описание патента на изобретение RU2672183C1

Изобретение относится к области измерительной техники и может быть использовано для определения качественного и количественного состава природного газа.

Поскольку химический состав природного газа на разных месторождениях сильно различается, предприятия, занимающиеся добычей, транспортировкой и переработкой природного газа, нуждаются в высокоточных, простых в обслуживании и надежных приборах газового контроля. Несмотря на широкое распространение для решения данной задачи газовых хроматографов, достаточно привлекательными выглядят газоанализаторы основанные на спектроскопии комбинационного рассеяния (КР) света. КР-газоанализаторы характеризуются отсутствием расходных материалов и сложной пробоподготовки, высоким быстродействием, а также возможностью одновременного контроля всех молекулярных соединений анализируемого газа, содержание которых превышает порог чувствительности аппаратуры. Суть работы КР-газоанализаторов заключается в следующем. При возбуждении молекул анализируемого газа лазерным излучением, в месте взаимодействия возникает рассеянное излучение, которое в своем спектральном составе помимо излучения на длине волны лазеры имеет дополнительные полосы, которые, в соответствии с их частотным сдвигом и интенсивностью, характеризуют состав анализируемого газа. Данное излучение собирается оптической системой (как правило, объективом или парой объективов) и направляется на входную щель спектрального прибора. В свою очередь для повышения достоверности расшифровки зарегистрированных спектров КР требуется высокое разрешение спектров, которое обеспечивается за счет уменьшения ширины входной щели спектрального прибора до десятков микрометров. С другой стороны для эффективного сбора рассеянного света и минимизации потерь на входной щели и без того слабых сигналов КР используется фокусировка лазерного излучения в перетяжку (рассеивающий объем) размером также до десятков микрометров. Таким образом для обеспечения максимальной эффективности работы КР-газоанализатора максимально узкое изображение рассеивающего объема должно строго попадать на узкую щель спектрального прибора. В данном случае при таких размерах изображения и щели даже при изменениях температуры или давления воздуха (ввиду изменения показателя преломления света), не говоря уже о механических вибрациях, будет иметь место разъюстировка оптической системы, которая, за счет смещения изображения со щели, будет приводить к уменьшению интенсивности регистрируемых сигналов КР, что будет в свою очередь негативно сказываться на достоверности проводимого анализа. Таким образом, обеспечение стабильной настройки оптической системы КР-газоанализатора является очень важной задачей.

Известен лазерный анализатор природного газа, основанный на методе спектроскопии КР [свидетельство на полезную модель №10462, 1999 г, G01N 21/25]. Данное устройство содержит лазер, фокусирующую линзу, газовую кювету, конденсорный объектив, деполяризующий клин, голографический фильтр, полихроматор, содержащий вогнутую дифракционную решетку, приемный блок, содержащий распределительный элемент и фотодиодные линейки, а также блок управления и ЭВМ. Основными его недостатками являются низкая интенсивность регистрируемых сигналов КР, обусловленная малым углом сбора рассеянного света, ввиду использования одного объектива, низкое качество спектров, ввиду использования вогнутой дифракционной решетки, а также низкая стабильность настройки оптической системы.

Известен анализатор состава природного газа [Патент РФ №126136, 2013 г, G01N 21/00] основанный на спектроскопии КР. Указанное устройство имеет в своем составе лазер, фокусирующую линзу, газовую кювету, голографический фильтр, блок управления сопряженный с ПК, а также светосильный спектральный прибор с плоской дифракционной решеткой сопряженный с ПЗС-матрицей. Основным недостатком данного анализатора является низкая интенсивность регистрируемых сигналов КР, обусловленная малым углом сбора рассеянного света, ввиду использования одного объектива, а также низкая стабильность настройки оптической системы.

Наиболее близким по принципу действия к патентуемому устройству

является газоанализатор природного газа основанный на спектроскопии КР [D.V. Petrov, I.I. Matrosov. Raman gas analyzer (RGA): Natural gas measurements // Applied Spectroscopy. 2016. V. 70. N 10. P. 1770-1776]. Указанное устройство имеет в своем составе лазер, фокусирующую линзу, поворотную призму, газовую кювету, пару объективов предназначенных для сбора и направления рассеянного света, между которыми установлен голографический фильтр, спектральный прибор сопряженный с ПЗС-матрицей, а также блок управления сопряженный с ПК. В отличие от двух указанных выше анализаторов, в данном приборе для сбора рассеянного света используются два объектива, что позволяет удвоить угол сбора рассеянного света и, соответственно, интенсивность регистрируемых сигналов КР.

Основным недостатком данного газоанализатора является низкая стабильность настройки оптической системы.

Задачей на решение которой направлено изобретение является обеспечение стабильности настройки оптической системы при использовании ширины входной щели спектрального прибора соизмеримой с размером изображения рассеивающего объема формируемого в ее плоскости.

Технический результат - повышение устойчивости метрологических характеристик анализатора к механическим вибрациям, а также изменениям температуры и давления атмосферного воздуха.

Указанный результат достигается тем, что в системе содержащей непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, оснащенной двумя окнами для пропускания лазерного излучения и одним окном для вывода рассеянного света, ловушку лазерного излучения, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным детектором, блок управления и ПК между щелью спектрального прибора и объективом, направляющим на нее собранное рассеянное излучение, установлена оптически прозрачная плоскопараллельная пластина наибольшие грани которой расположены параллельно плоскости входной щели.

Оптически прозрачная плоскопараллельная пластина позволяет посредством ее поворота сместить изображение рассеивающего объема в плоскости экрана, которая в данном случае является плоскостью входной щели (см. Фиг. 3). В свою очередь, ее расположение на оси ротора шагового двигателя позволяет полностью автоматизировать данный процесс, а также осуществлять указанное смещение изображения на очень малую величину. Необходимо отметить, что поскольку вертикальный размер изображения рассеивающего объема много больше его горизонтального размера, то такое смещение целесообразно осуществлять только вдоль горизонтали. В этой связи данная пластина закреплена на оси ротора шагового двигателя, которая в свою очередь располагается в одной плоскости с осью распространения лазерного луча в кювете.

Изобретение поясняется рисунками.

На фиг. 1 приведена блок-схема предлагаемого устройства.

На фиг. 2 приведен предлагаемый анализатор состава природного газа (вид сверху)

Фиг. 3 демонстрирует смещение изображения с помощью оптически прозрачной плоскопараллельной пластины.

Анализатор состава природного газа (фиг. 7, 2) содержит непрерывный лазер 1, фокусирующую линзу 2, поворотную призму 3, газовую кювету 4, ловушку лазерного излучения 5, объективы 6 и 8, голографический фильтр 7, шаговый двигатель 9, плоскопараллельную пластину 10, спектральный прибор 11, многоканальный фотодетектор 12, блок управления 13 и ПК 14.

Предлагаемый анализатор состава природного газа работает следующим образом. Излучение от лазера 1 направляется поворотной призмой 3 сквозь кювету 4 содержащую анализируемый природный газ, фокусируясь в ее центре линзой 2, и попадает в ловушку лазерного излучения 5. Образовавшееся рассеянное на молекулах природного газа излучение из центра кюветы собирается объективом 6. Сформировавшийся параллельный пучок собранного рассеянного излучения, проходя через голографический фильтр 7, блокирующий излучение в области длины волны лазера, направляется на объектив 8, который направляет его сквозь оптически прозрачную плоскопараллельную пластину 9, находящуюся на оси ротора шагового двигателя 10, и фокусирует его на входной щели спектрального прибора 11. Данный спектральный прибор, в свою очередь, осуществляет разложение поступившего излучения в спектр, который регистрируется многоканальным фотодетектором 12. Детектор передает электрические сигналы в блок управления 13, откуда они направляются на ПК 14 для проведения математической обработки, вычисления концентраций компонентов и визуализации результатов. До проведения регистрации спектра КР анализируемого природного газа по которому будет осуществляться определение его состава, осуществляется процедура подстройки оптической системы суть, которой заключается в следующем. Шаговый двигатель 10 делает один шаг, поворачивая плоскопараллельную пластину 9 относительно своего первоначального положения (положение при котором наибольшие грани пластины расположены параллельно плоскости входной щели) и в блоке управления 13 осуществляется оценка интегральной интенсивности регистрируемого спектра. После этого шаговый двигатель делает следующий шаг в сторону увеличения отклонения от первоначального положения и также происходит процедура оценки интегральной интенсивности полученного спектра. Данная процедура повторяется до тех пор, пока интегральная интенсивность регистрируемого спектра не упадет в 2 раза. Полученные данные соответствия положения поворота пластины и зарегистрированной интенсивности хранятся в памяти блока управления 13. После этого шаговый двигатель возвращается в свое первоначальное положение и делает повороты пластины в противоположную сторону с соответствующей регистрацией спектров и оценкой их интегральной интенсивности на каждый шаг. Данная процедура аналогичным образом повторяется до тех пор, пока интегральная интенсивность не упадет в 2 раза относительно первоначального положения. После этого шаговый двигатель поворачивает пластину в то положение, где интенсивность была максимальной и проводится регистрация спектра КР анализируемого газа, из которого потом будет определен его качественный и количественный компонентный состав.

Похожие патенты RU2672183C1

название год авторы номер документа
СВЕТОСИЛЬНЫЙ КР-ГАЗОАНАЛИЗАТОР 2014
  • Петров Дмитрий Витальевич
  • Матросов Иван Иванович
  • Сединкин Данила Олегович
RU2583859C1
КР-газоанализатор 2017
  • Петров Дмитрий Витальевич
  • Матросов Иван Иванович
  • Зарипов Алексей Рамильевич
RU2672187C1
КР-газоанализатор 2018
  • Петров Дмитрий Витальевич
RU2686874C1
КР-газоанализатор 2021
  • Петров Дмитрий Витальевич
  • Матросов Иван Иванович
  • Костенко Матвей Александрович
RU2755635C1
Лазерный газоанализатор 2015
  • Петров Дмитрий Витальевич
RU2613200C1
КР-газоанализатор 2022
  • Петров Дмитрий Витальевич
  • Костенко Матвей Александрович
  • Таничев Александр Сергеевич
  • Волков Виктор Константинович
RU2787943C1
Анализатор состава природного газа 2017
  • Петров Дмитрий Витальевич
RU2650363C1
АНАЛИЗАТОР СОСТАВА ВЫДЫХАЕМОГО ВОЗДУХА 2013
  • Петров Дмитрий Витальевич
RU2555507C1
ЛАЗЕРНЫЙ ИЗМЕРИТЕЛЬ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ В ПОТОКЕ ОТРАБОТАВШИХ ГАЗОВ СУДОВЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2023
  • Туркин Владимир Антонович
  • Шеманин Валерий Геннадьевич
  • Игнатенко Георгий Владимирович
  • Беляев Владимир Владимирович
  • Зубко Сергей Сергеевич
RU2817734C1
ЛАЗЕРНЫЙ АНАЛИЗАТОР МИКРОЧАСТИЦ И БИОЛОГИЧЕСКИХ МИКРООБЪЕКТОВ 2000
  • Соболев В.С.
  • Уткин Е.Н.
  • Прокопенко М.Н.
  • Щербаченко А.М.
  • Столповский А.А.
  • Скурлатов А.И.
RU2186362C1

Иллюстрации к изобретению RU 2 672 183 C1

Реферат патента 2018 года Анализатор состава природного газа

Изобретение относится к области измерительной техники и касается анализатора состава природного газа. Анализатор содержит непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, ловушку лазерного излучения, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным фотодетектором, блок управления и персональный компьютер. Между щелью спектрального прибора и объективом, направляющим на нее собранное рассеянное излучение, на оси ротора шагового двигателя, находящейся в одной плоскости с осью, вдоль которой внутри кюветы распространяется лазерное излучение, установлена оптически прозрачная плоскопараллельная пластина, наибольшие грани которой расположены параллельно плоскости входной щели. Технический результат заключается в повышении устойчивости метрологических характеристик анализатора к механическим вибрациям, изменению температуры и давления воздуха. 3 ил.

Формула изобретения RU 2 672 183 C1

Анализатор состава природного газа, содержащий непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, ловушку лазерного излучения, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным фотодетектором, блок управления и ПК, отличающийся тем, что между щелью спектрального прибора и объективом, направляющим на нее собранное рассеянное излучение, на оси ротора шагового двигателя, находящейся в одной плоскости с осью, вдоль которой внутри кюветы распространяется лазерное излучение, установлена оптически прозрачная плоскопараллельная пластина, наибольшие грани которой расположены параллельно плоскости входной щели.

Документы, цитированные в отчете о поиске Патент 2018 года RU2672183C1

D.V
Petrov, I.I
Matrosov
"Raman gas analyzer (RGA): Natural gas measurements", APPLIED SPECTROSCOPY, т
Деревянный торцевой шкив 1922
  • Красин Г.Б.
SU70A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Глиняный прессбювар 1924
  • Голицын И.А.
SU1770A1
A
A
Azbukin и др
"A Stationary Gas Analyzer of Nitric and Sulfur Oxides", INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, т
Способ смешанной растительной и животной проклейки бумаги 1922
  • Иванов Н.Д.
SU49A1
Устройство для удержания спектральной линии на щели фотометра 1975
  • Дружинин С.А.
  • Осак Б.Ф.
SU575918A1
US 7561326 B2, 14.07.2009.

RU 2 672 183 C1

Авторы

Петров Дмитрий Витальевич

Матросов Иван Иванович

Даты

2018-11-12Публикация

2017-12-18Подача