Способ обнаружения кометного вещества и идентификации его с источником происхождения Российский патент 2018 года по МПК G01N1/00 B64G4/00 

Описание патента на изобретение RU2673128C1

Изобретение относится к космическим технологиям, а именно, к способам экспериментальных исследований в космическом пространстве.

Анализ вещества астрономических тел - одно из самых информативных направлений в исследовании Вселенной. Метеориты долгое время, до доставки на Землю лунного грунта, были единственными образцами внеземного вещества, доступными прямому лабораторному анализу, чем они интересны для науки и по сей день.

Метеориты, падающие на Землю, это осколки, обломки астероидов. Но если метеоритика традиционно располагает исторически накопленным и периодически пополняемым материалом для исследований, то кометное вещество находится в явном дефиците.

Возможны следующие пути обнаружения веществ кометных тел, попавших в сферу Земли: метеороиды, выпадающие в виде кометных метеоритов; кометные обломки, взрывающиеся в атмосфере и засыпающие мелкодисперсным веществом большие площади в районе взрыва; кометные ядра, образующие ударные кратеры и астроблемы в результате импакта о твердую поверхность Земли. Указанные пути зависимы от фактора случайности, не обеспечивают систематического получения материала для исследований. Критерии идентификации собранного материала, как кометного вещества, только разрабатываются в рамках нового научного направления - кометной метеоритики.

Знание химического состава вещества, из которого состоит ядро, кома и хвост, является одной из задач изучения комет. Широко используется дистанционный метод астроспектроскопии для определения состава астрономических объектов. Однако спектр фотометрического ядра может быть просто отраженным солнечным или эмиссионным молекулярным спектром. Отраженный солнечный спектр ничего не сообщает о химическом составе той области, от которой он отразился - ядра кометы или пылевой атмосферы, окружающей ядро. Эмиссионный газовый спектр несет информацию о химическом составе газовой атмосферы, окружающей ядро, и тоже ничего не сообщает о химическом составе поверхностного слоя ядра. Прямое и неопосредованное исследование астрономических объектов является наиболее достоверным, но весьма сложным, многоаспектным и чрезвычайно затратным подходом.

Полеты к кометам являются значимыми акциями в мировой космонавтике. В 1986 г. отечественные зонды «Вега-1» и «Вега-2», европейский зонд «Giotto», японские «Suiei» и «Sygikake», американский ICE были направлены к комете Галлея, но получить кометное вещество не удалось. Космические аппараты приближались уже к семи разным кометам, но все подобные миссии сводились к быстрому пролету мимо комет (Хвостатые звезды. Популярная механика, №9, сентябрь 2004 г.; http:/www.nkj.ru/news/29638/).

Продуктивная по многим другим аспектам, миссия к комете Чюрюмова-Герасименко аппарата «Розетта-Филе» также не увенчалась отбором кометного вещества из-за неудачной посадки (http:www.spletnik.ru/blogs/kruto/l02316).

Известна миссия аппарата «Стардаст» к комете Вильда-2. На борту «Стардаста» имелись масс-спектрометр для анализа состава пыли в реальном времени, коллекторные пластины с аэрогеливыми ловушками, которые находились в раскрытом положении в январе 2004 г. при заборе пылевого материала из комы кометы (Хвостатые звезды. Популярная механика, №9, сентябрь 2004 г.; http:/www.nkj.ru/news/29638/).

Применительно к дальнейшим исследованиям комет, проектам «Стардаст» и «Розетта-Филе» присущи следующие недостатки.

1. В каталоге кометных орбит доктора Марседена (http:/mirznanii.com/a/komety), изданном в 2003 году, содержатся данные о 1679 различных кометах, из них 377-периодические, то есть регулярно возвращающиеся к Солнцу. Некорректно представлять полученную в упомянутых проектах информацию в виде общей для комет. Исследовать же представительное количество комет способом космических экспедиций вряд ли будет возможно в обозримом будущем ввиду их сложности и чрезвычайно высокой стоимости.

2. Большая продолжительность миссии: от старта «Стардаста» в феврале 1999 г. (м. Канаверал), до возвращения капсулы с результатами (15 января 2006 г., Невада) - 7 лет; экспедиция «Розетта-Филе» - 10 лет. Отсутствует возможность проводить систематические и регулярные исследования различных комет.

3. Непрямое исследование кометной пыли. Основным объектом исследований стали экспонированные кусочки аэрогеля, а также кусочки алюминиевой фольги, которыми были выложены стенки ячеек с аэрогелем. Точно так же, как выжимают губку, материал был «выжат» из аэрогеля после кипячения его в воде высокой степени чистоты и только полученный экстракт исследовали на присутствие органики.

4. Требуются доказательства, что найденные вещества входили в состав кометного вещества, так как вполне реально загрязнение космических образцов земными и некометными веществами по причинам:

- нестерильность собственно ловушек;

- загрязнение аппарата при сборке, транспортировке, запуске;

- дегазация материалов на Земле и в полете;

- попадание в ловушку за 7 лет полета веществ не из кометы;

- необходимость проведения изотопного анализа в подтверждение кометного происхождения доставленного вещества; задача оказалась чрезвычайно сложной в связи с крохотными размерами образцов и безрезультатностью использования для этой цели стандартных методов; на разработку методики и специальной аппаратуры с необходимой точностью и чувствительностью ушло два года.

Известен способ поиска и обнаружения микроорганизмов космического происхождения, заключающийся в том, что выполняют взятие проб-мазков с поверхности георбитальной станции при полете в режиме орбитальной ориентации с поверхностей, обращенных по направлению и против направления полета, к Земле и в зенит, на участках орбиты в апогее, перигее, в периоды равноденствия и солнцестояния (прототип RU 2618603 С2, опубл. 10.01.2017). Такой способ координирует пробу на поверхности станции, в пространстве относительно Земли и Солнца, по месту и времени положения на орбите, но никак не связан с другими явлениями и объектами небесной обстановки, что ограничивает набор целей взятия проб. (Прототип).

Задачей изобретения является создание способа обнаружения кометного вещества и возможности идентификации кометного вещества с источником происхождения.

Техническим результатом изобретения является повышение достоверности идентификации кометного вещества с источником происхождения за счет возможности планирования операций по отбору проб в соответствии с календарными сроками существования метеороидных потоков, с учетом их максимальной активности и связи с кометой-прародителем.

Технический результат изобретения достигается тем, что в способе обнаружения кометного вещества и идентификации его с источником происхождения выполняют отбор проб-мазков с поверхности орбитальной станции посредством стерилизованного и гермоизолированного на Земле пробоотборника, после чего последний гермоизолируют в вакууме и возвращают на Землю, причем пробы-мазки отбирают в определенный календарный период, когда конкретный поток метеороидов пересекает орбиту Земли, а станция, передвигаясь по геоцентрической орбите на высоте не менее 100 км от поверхности Земли, находится в потоке метеороидов, при этом отбор проб выполняют в интервале времени после максимума активности потока за 10-25% эпохи активности потока до ее завершения, а вещество пробы по происхождению идентифицируют соответственно существующей установленной связи конкретного метеороидного потока с кометой-прародителем (http://www.astronet.ru/db/msg/1168084).

Рой метеороидов представляет собой частички кометных ядер, комы и хвоста комет, то есть кометное вещество в виде непрерывного потока, пересекающего в некоторый интервал времени орбиту Земли. Принято, что диаметр потока больше диаметра Земли, следовательно, двигаясь по своей орбите, совершая ежесуточно 15-16 витков вокруг Земли, станция на каждом витке пересекает поток метеороидов (http://tourabai.kz/dmitriev/; Метеороиды как источники аэрозоля в верхней атмосфере / В.Г. Кучеренко, П.Н. Козак, Ю.Г. Тарануха и др. Оптика атмосферы и океана. 2010, Т. 23, №11, С. 957-967).

Метеоры являются следами от сгорания большинства частиц потока на высоте 80-100 км (http://ciencia.nasa.gov/; http://www.astronet.ru/db/msg/1168084). Не сгоревшие единичные частицы осаждаются на Землю в виде микрометеоритов и малодоступны для обнаружения.

На высоте полета орбитальной станции - 400 км, рой метеороидов в эпоху активности представлен в виде насыщенного потока несгоревших частиц, оседающих и на поверхность станции. В период активности количество метеороидов в потоке может достигать за сутки несколько тысяч при ZNR≈1÷150 (зенитное часовое число (Zenithal Hourly Rate) - среднее количество метеоров, которое идеальный наблюдатель увидел бы при абсолютно чистом небе и радианте, находящемся в зените; http://saros70.narod.ru/meteorshowers.htm; http://wiki-org.ru). Таким образом, орбитальная станция, находясь в метеороидном потоке, является инструментом сбора осадочного вещества.

К настоящему времени установлено прямая связь метеороидных потоков с кометами-прародителями (http:/mirznanii.com/a/komety).

Предлагаемый способ обнаружения кометного вещества и его идентификация с кометой-прародителем реализуется следующим образом. В наземных условиях пробозаборник стерилизуют, помещают в стерилизованную полость, гермоизолируют и доставляют на орбитальную станцию. Орбитальная станция используется как ловушка частиц и объект осадконакопления при нахождении ее в потоке метеороидов. По астрономическим данным, на календарный период существования определенного метеороидного потока планируется выход экипажа на внешнюю поверхность станции. При выходе в открытый космос космонавт извлекает пробозаборник из полости, берет пробы-мазки мелкодисперсной среды поверхности орбитальной станции, гермоизолирует пробозаборник в полости в условиях вакуума, затем пробозаборник возвращают на Землю для исследований. Обор проб производится в эпоху активности потока, после прохождения максимума активности за 10-25% эпохи активности до ее завершения с целью аккумуляции осадка. Высота орбиты станции - более 100 км и до 400 км обеспечивает высокую насыщенность потока и максимум осадочного вещества. Отождествление вещества проб с источниками происхождения выполняют на основе известных связей метеороидных потоков с кометами-прародителями.

Пример использования изобретения.

1. На Земле, в специализированных условиях, проводят подготовку прибора для отбора проб: стерилизуют пробоотборники, помещают их в стерилизованные полости и гермоизолируют.

2. Подготовленные приборы на грузовом корабле «Прогресс» доставляют на МКС и оставляют в режиме хранения.

3. По астрономическим данным (http://wiki-org.ru) устанавливают календарные сроки активности метеороидных потоков, например, Персеиды:

4. Устанавливают оптимальный интервал отбора проб:

за 0,1-0,25 эпохи активности до ее завершения,

т.е. 39(0,1-0,25)≈4÷10 суток до 24 августа 2017 г.

Планируют календарный период отбора проб после максимума активности: 14-20 августа 2017 г. В данный период высота орбиты МКС ~ 400 км.

5. 17 августа 2017 г. экипаж PC МКС в составе космонавтов Ф. Юрчихина и С. Рязанского осуществил выход в открытый космос и выполнил отбор проб-мазков в 8-точках поверхности МКС именно в период, когда конкретный поток метеороидов Персеиды пересекает орбиту Земли, а МКС, передвигаясь по геоцентрической орбите на высоте >100 км от поверхности Земли, находится в потоке метеороидов и является объектом осадконакопления.

6. Космонавты гермоизолировали пробоотборники в стерильных полостях непосредственно за бортом МКС, в космическом вакууме и вернули приборы в станцию для возвращения на Землю в транспортном корабле «Союз».

7. При лабораторном анализе отобранные пробы могут быть идентифицированы как вещество хвоста кометы-прародителя 1093 Свифта-Туттля (http://wiki-org.ru).

Использование способа обнаружения кометного вещества и идентификации его с источником происхождения обеспечивает следующие возможности и преимущества:

1. Для анализа предоставляется материальное вещество, отобранное из мелкодисперсного осадка на поверхности орбитальной станции.

2. Осадок на поверхности станции образуется в процессе многократного пересечения станцией при движении по своей орбите метеороидного потока, являющегося хвостом кометы.

3. Планирование операций по отбору проб в соответствии с календарными сроками существования метеороидных потоков, с учетом их максимальной активности и связи с кометой-прародителем.

Похожие патенты RU2673128C1

название год авторы номер документа
Способ поиска и обнаружения микроорганизмов космического происхождения 2015
  • Соловьёв Владимир Алексеевич
  • Цыганков Олег Семёнович
  • Шубралова Елена Владимировна
RU2618603C2
СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ МИКРООРГАНИЗМОВ В КОСМИЧЕСКОМ ПРОСТРАНСТВЕ 2015
  • Цыганков Олег Семёнович
RU2603706C1
Способ забора и доставки на Землю проб космической пыли из окрестностей точек либрации системы Земля-Луна и комплекс средств для его реализации 2018
  • Цыганков Олег Семёнович
RU2691686C1
Система контроля состояния внешней поверхности гермооболочки корпуса космического объекта под экранно-вакуумной теплоизоляцией, используемая космонавтом в процессе внекорабельной деятельности, и способ её эксплуатации 2019
  • Полещук Александр Фёдорович
  • Цыганков Олег Семёнович
RU2716608C1
Устройство для забора проб космонавтом в скафандре с внешней поверхности гермооболочки космического объекта 2019
  • Цыганков Олег Семёнович
RU2703208C1
ДАТЧИК ДЛЯ РЕГИСТРАЦИИ И ЗАМЕРА ПАРАМЕТРОВ МЕТЕОРОИДНЫХ И ТЕХНОГЕННЫХ ЧАСТИЦ, МЕЖЗВЕЗДНОЙ И МЕЖПЛАНЕТНОЙ ПЫЛИ, ВОЗДЕЙСТВУЮЩИХ НА КОСМИЧЕСКИЙ АППАРАТ 2011
  • Иванов Николай Николаевич
  • Иванов Алексей Николаевич
RU2457986C1
СПОСОБ ПРЕДУПРЕЖДЕНИЯ ОБ ОПАСНЫХ СИТУАЦИЯХ В ОКОЛОЗЕМНОМ КОСМИЧЕСКОМ ПРОСТРАНСТВЕ И НА ЗЕМЛЕ И АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Козлов Виктор Григорьевич
  • Лаврентьев Виктор Григорьевич
  • Олейников Игорь Игоревич
  • Середин Сергей Вадимович
RU2570009C1
МЕЖДУНАРОДНАЯ АЭРОКОСМИЧЕСКАЯ СИСТЕМА ГЛОБАЛЬНОГО МОНИТОРИНГА (МАКСМ) 2010
  • Кузьменко Игорь Анатольевич
  • Лысый Сергей Романович
  • Макаров Михаил Иванович
  • Меньшиков Валерий Александрович
  • Пичурин Юрий Георгиевич
  • Пушкарский Сергей Васильевич
  • Радьков Александр Васильевич
  • Черкасс Сергей Викторович
RU2465729C2
БОРТОВОЙ ИЗМЕРИТЕЛЬНЫЙ МОДУЛЬ ДЛЯ УЛАВЛИВАНИЯ, СБОРА, РЕГИСТРАЦИИ И ИЗМЕРЕНИЯ ПАРАМЕТРОВ МЕТЕОРОИДНЫХ И ТЕХНОГЕННЫХ ЧАСТИЦ, МЕЖЗВЕЗДНОЙ И МЕЖПЛАНЕТНОЙ ПЫЛИ, А ТАКЖЕ РЕГИСТРАЦИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ, ВОЗДЕЙСТВУЮЩИХ НА КОСМИЧЕСКИЙ АППАРАТ И ПЛАНЕТОХОД-РОВЕР 2012
  • Иванов Николай Николаевич
  • Иванов Алексей Николаевич
RU2505462C1
Космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения опасных для Земли небесных тел - астероидов и комет 2015
  • Алыбин Вячеслав Георгиевич
  • Белый Алексей Михайлович
  • Берёзкин Владимир Владимирович
  • Булгаков Николай Николаевич
  • Емельянов Владимир Алексеевич
  • Ермаков Пётр Николаевич
  • Ершов Андрей Николаевич
  • Константин Сергеевич
  • Захаров Андрей Игоревич
  • Ивасик Владимир Александрович
  • Кулешов Юрий Павлович
  • Мисник Виктор Порфирьевич
  • Носатенко Пётр Яковлевич
  • Полуян Александр Петрович
  • Прохоров Михаил Евгеньевич
  • Рыхлова Лидия Васильевна
  • Шустов Борис Михайлович
  • Яковенко Юрий Павлович
RU2610066C1

Реферат патента 2018 года Способ обнаружения кометного вещества и идентификации его с источником происхождения

Изобретение относится к исследованиям космической среды на борту, в частности, орбитальных станций. Согласно способу выполняют отбор проб-мазков с поверхности станции посредством стерилизованного и гермоизолированного на Земле пробоотборника. Затем последний гермоизолируют в вакууме и возвращают на Землю. Пробы-мазки отбирают в календарный период, когда конкретный метеорный поток пересекает орбиту Земли, а станция, двигаясь по орбите с высотой не менее 100 км, находится в этом потоке. Отбор проб выполняют после максимума активности потока за время до завершения эпохи активности потока, равное 10-25% этой эпохи. Вещество пробы по происхождению идентифицируют по установленной связи конкретного метеорного потока с кометой-прародителем. Техническим результатом является повышение достоверности идентификации кометного вещества с источником происхождения.

Формула изобретения RU 2 673 128 C1

Способ обнаружения кометного вещества и идентификации его с источником происхождения, заключающийся в том, что выполняют отбор проб-мазков с поверхности орбитальной станции посредством стерилизованного и гермоизолированного на Земле пробоотборника, после чего последний гермоизолируют в вакууме и возвращают на Землю, отличающийся тем, что пробы-мазки отбирают в определенный календарный период, когда конкретный поток метеороидов пересекает орбиту Земли, а станция, двигаясь по геоцентрической орбите на высоте не менее 100 км от поверхности Земли, находится в потоке метеороидов, при этом отбор проб выполняют в интервале времени после максимума активности потока за 10-25% эпохи активности потока до ее завершения, а вещество пробы по происхождению идентифицируют соответственно существующей установленной связи конкретного метеороидного потока с кометой-прародителем.

Документы, цитированные в отчете о поиске Патент 2018 года RU2673128C1

Способ поиска и обнаружения микроорганизмов космического происхождения 2015
  • Соловьёв Владимир Алексеевич
  • Цыганков Олег Семёнович
  • Шубралова Елена Владимировна
RU2618603C2
УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБ КОСМОНАВТОМ С ВНЕШНЕЙ ПОВЕРХНОСТИ КОСМИЧЕСКОГО ОБЪЕКТА 2013
  • Цыганков Олег Семёнович
  • Шубралова Елена Владимировна
  • Дешевая Елена Андреевна
  • Цыганкова Зоя Вячеславовна
  • Макаров Александр Владимирович
RU2536746C2
БОРТОВОЙ ИЗМЕРИТЕЛЬНЫЙ МОДУЛЬ ДЛЯ УЛАВЛИВАНИЯ, СБОРА, РЕГИСТРАЦИИ И ИЗМЕРЕНИЯ ПАРАМЕТРОВ МЕТЕОРОИДНЫХ И ТЕХНОГЕННЫХ ЧАСТИЦ, МЕЖЗВЕЗДНОЙ И МЕЖПЛАНЕТНОЙ ПЫЛИ, А ТАКЖЕ РЕГИСТРАЦИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ, ВОЗДЕЙСТВУЮЩИХ НА КОСМИЧЕСКИЙ АППАРАТ И ПЛАНЕТОХОД-РОВЕР 2012
  • Иванов Николай Николаевич
  • Иванов Алексей Николаевич
RU2505462C1
ДАТЧИК ДЛЯ РЕГИСТРАЦИИ И ЗАМЕРА ПАРАМЕТРОВ МЕТЕОРОИДНЫХ И ТЕХНОГЕННЫХ ЧАСТИЦ, МЕЖЗВЕЗДНОЙ И МЕЖПЛАНЕТНОЙ ПЫЛИ, ВОЗДЕЙСТВУЮЩИХ НА КОСМИЧЕСКИЙ АППАРАТ 2011
  • Иванов Николай Николаевич
  • Иванов Алексей Николаевич
RU2457986C1
US 8564430 B2, 22.10.2013.

RU 2 673 128 C1

Авторы

Цыганков Олег Семёнович

Шубралова Елена Владимировна

Даты

2018-11-22Публикация

2017-09-25Подача