Изобретение относится к области приборостроения и может быть использовано для оперативного контроля волнового сопротивления различных кабелей и витых пар, применяемых для передачи импульсных сигналов в современных системах цифровой связи.
Известны несколько стандартных способов измерения волнового сопротивления кабелей (ГОСТ Р51978–2002. Методика определения волнового сопротивления и коэффициента затухания), основанных на учете геометрических размеров кабеля или на применении генератора гармонических сигналов различной частоты, к которым относятся:
– способ определения волнового сопротивления по отношению диаметров проводов и диэлектрической проницаемости изоляции кабеля, относящийся к расчетным методам и применяющийся в основном только для контроля качества коаксиальных кабелей, точность которого ограничивается технологическим разбросом проводов и оплетки кабеля за счет допусков при его изготовлении;
– способ определения волнового сопротивления путем измерения емкости кабеля
– способ определения волнового сопротивления путем измерения напряжения
Известен способ измерения комплексных сопротивлений пассивных многополюсников, при котором к исследуемому многополюснику подключают генератор гармонического сигнала поочередно через различные аттенюаторы с известными затуханиями, измеряют на входе и на выходе аттенюаторов напряжение относительно земляного полюса многополосника. При этом для каждого используемого аттенюатора параллельно измеряемому многополюснику подключают реактивное сопротивление с известным значением и повторяют измерения напряжений на входе и выходе аттенюатора. По результатам измерений вычисляют активную и реактивную составляющую комплексного сопротивления многополюсника (патент РФ №2317559 С1, опубл. 20.02.2008 г., бюл. № 5).
Наиболее близким по технической сущности и выполняемым функциям аналогом (прототипом) к заявленному является способ измерения физических параметров материала (патент РФ №2571301 С2, опубл. 27.03.2015 г., бюл. № 9), заключающийся в том, что производят измерение напряжения зондирующего сигнала во входной цепи первичного преобразователя, выполненного в виде короткозамкнутого на дальнем конце отрезка длинной линии, заполняемого контролируемым материалом, причём измерения напряжения выполняют одновременно в двух точках: непосредственно на входе преобразователя и на измерительном резисторе, включенном между генератором и преобразователем, при этом генератор перестраивают в диапазоне частот дискретными шагами, и на каждом шаге вычисляют отношение напряжения на входе первичного преобразователя к напряжению на измерительном резисторе, и по минимуму этого отношения определяют частоты гармоник при заполнении первичного преобразователя воздухом и при заполнении его контролируемым материалом. По значениям частот нескольких гармоник вычисляют действительную составляющую показателя преломления материала. Мнимую составляющую показателя преломления вычисляют по величине отношения напряжения на входе первичного преобразователя к напряжению на входе резистора. Далее определяют физические параметры, влияющие на показатель преломления.
В данной области техники существует техническая проблема, заключающаяся в том, что в результате контроля волнового сопротивления кабелей известными способами обеспечивается недостаточная точность при относительной сложности измерений, характеризующихся необходимостью подключения измерительных средств к входным и выходным цепям кабелей с их замыканием и размыканием. Эта техническая проблема обусловлена тем, что стандартная строительная длина кабелей связи составляет от 305 до 500 м при поставке на катушках и не менее 100 м – при поставке в бухтах (по ГОСТ Р 54429–2011), поэтому при большой длине кабелей их нужно наматывать на барабан или сматывать в бухты. При этом измеренные значения волнового сопротивления могут составлять до 10 % выше реальных. Это происходит в результате плотной упаковки кабеля на барабане или в бухте за счет проявления межвитковых эффектов.
Кроме того, известные способы измерения волнового сопротивления с применением генераторов гармонических колебаний не позволяют реализовать оперативный контроль кабелей, а также периодический контроль волнового сопротивления кабелей, проложенных в подземных коммуникациях, т. е. не обеспечивают универсальности их применения для практических исследований и оценки качества работающих кабелей связи.
Техническая проблема решается созданием способа контроля волнового сопротивления кабелей связи, позволяющего упростить процесс измерения и обеспечить универсальность контроля при сохранении точности измерения волнового сопротивления.
Эта техническая проблема решается тем, что согласно способу контроля волнового сопротивления кабелей на вход измеряемого кабеля связи от генератора импульсов через образцовый резистор
Перечисленная новая совокупность существенных признаков – введение повторителя напряжения между генератором импульсов и образцовым резистором и измерение вертикального фронта импульсов при разомкнутых проводах на дальнем конце измеряемого кабеля – обеспечивает значительное упрощение и универсальность измерения волнового сопротивления кабеля.
Заявляемый способ реализуется устройством, структурная схема которого приведена на фиг. 1, а работа его основных функциональных узлов поясняется временными диаграммами напряжений, показанными на фиг. 2.
Устройство содержит генератор импульсов 1, который через повторитель напряжения 2 и образцовый резистор 3 подключен к входу исследуемого кабеля связи 4 и соединен с входом устройства измерения 5, устройство управления 6, задающее частоту импульсов генератора 1.
Устройство, реализующее предлагаемый способ контроля волнового сопротивления кабеля связи, работает следующим образом.
Генератор импульсов 1 формирует прямоугольные импульсы напряжения с амплитудой
После появления максимума вертикального фронта
Применение повторителя напряжения 2 на операционном усилителе с низким выходным сопротивлением RВЫХ2 ≤ 1 Ом позволяет исключить влияние внутреннего сопротивления генератора 1 на точность контроля волнового сопротивления кабеля связи 4. Кроме того, применение в качестве устройства измерения цифрового осциллографа 5 с увеличением масштаба вблизи максимума скачка напряжения
Проведенный анализ уровня техники и сравнение представленных технических решений позволили установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного способа контроля волнового сопротивления кабелей связи, отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».
Результаты поиска известных технических решений в данной и смежных областях измерений для выявления признаков, совпадающих с отличительными от прототипа признаками заявленного способа, показали, что они не следуют явным образом из уровня техники. Из современного уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, данное изобретение соответствует условию патентоспособности «изобретательский уровень».
Промышленная применимость способа обусловлена тем, что устройство, реализующее предлагаемый способ контроля волнового сопротивления кабелей связи, может быть осуществлено с помощью современной элементной базы, с достижением указанного в изобретении назначения.
Для оценки эффективности предлагаемого способа были проведены экспериментальные исследования, в результате которых установлено, что применение генератора импульсов типа Г3-34, образцового резистора типа С5-5 класса 0,05 и цифрового осциллографа типа GDS-810С позволяет реализовать контроль волнового сопротивления кабелей связи длиной до 10 км. Для сравнения точности контроля предлагаемым способом с результатами измерений известными способами использовался цифровой прибор типа LCR-816, которым измерялись активное сопротивление RКС и индуктивность LКС при разомкнутых проводах на конце кабеля связи, а емкость CКС – при размыкании этих проводов. Затем вычислялось волновое сопротивление кабеля связи
В результате обработки и усреднения полученных данных установлено, что разброс значений при определении волнового сопротивления по ГОСТ Р 51978-2002 и предлагаемым способом контроля волнового сопротивления кабелей связи не превышает ±1 Ом при номинальном волновом сопротивлении исследуемого кабеля
Применение образцового резистора с сопротивлением, равным номинальному волновому сопротивлению
Таким образом, упрощение процесса измерения предлагаемым способом достигается за счет исключения замыкания выходных цепей кабеля и серий измерений, необходимых для расчетов действительных и мнимых составляющих, а универсальность его применения достигается за счет выполнения контроля только на одной стороне (на входе) кабеля связи. Это позволяет выполнять контроль параметров кабелей связи как в процессе их изготовления, так и при периодическом контроле в процессе эксплуатации. Кроме того, подключение измерительной аппаратуры к концам кабеля, проложенного в земле или в защитном трубопроводе, позволяет реализовать контроль его волнового сопротивления с учетом внешней среды.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЙ КОМПЛЕКСНЫХ СОПРОТИВЛЕНИЙ МНОГОПОЛЮСНИКА (ВАРИАНТЫ) | 2006 |
|
RU2317559C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МНОГОЭЛЕМЕНТНЫХ ДВУХПОЛЮСНИКОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2010 |
|
RU2434234C1 |
ИЗМЕРИТЕЛЬ ДОБРОТНОСТИ И ЕЛ\КОСТИ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ | 1972 |
|
SU429375A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ | 2019 |
|
RU2698505C1 |
Регулируемый активный двухполюсник, имитирующий полное сопротивление | 1987 |
|
SU1601748A1 |
СПОСОБ ИЗМЕРЕНИЯ ВРЕМЕНИ ЗАДЕРЖКИ ИМПУЛЬСОВ В ЛИНИИ СВЯЗИ | 2016 |
|
RU2627200C1 |
Калибратор импульсного напряжения | 1982 |
|
SU1034020A1 |
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ СВЧ НАГРУЗКИ | 2019 |
|
RU2731020C1 |
Способ определения места повреждения кабельной электрической линии | 2022 |
|
RU2782962C1 |
Способ настройки спектрометрической аппаратуры | 2021 |
|
RU2759541C1 |
Использование: для оперативного контроля волнового сопротивления кабелей в современных системах цифровой связи. Сущность изобретения заключается в том, что способ контроля волнового сопротивления кабелей связи, заключающийся в том, что на вход кабеля связи подают прямоугольные импульсы от генератора импульсов, подключают к кабелю связи резистор и измеряют напряжение зондирующего сигнала во входной цепи кабеля связи, что между генератором импульсов с амплитудой и входом кабеля связи устанавливают последовательно соединенные повторитель напряжения и образцовый резистор, размыкают кабель связи на дальнем конце, измеряют максимальное значение скачка напряжения на входе кабеля связи и вычисляют волновое сопротивление кабеля связи. Технический результат: обеспечение возможности упрощения процесса контроля и универсальности его применения при сохранении высокой точности измерения волнового сопротивления кабелей. 2 ил.
Способ контроля волнового сопротивления кабелей связи, заключающийся в том, что на вход кабеля связи подают прямоугольные импульсы от генератора импульсов, подключают к кабелю связи резистор и измеряют напряжение зондирующего сигнала во входной цепи кабеля связи, отличающийся тем, что между генератором импульсов с амплитудой
СПОСОБ ИЗМЕРЕНИЙ КОМПЛЕКСНЫХ СОПРОТИВЛЕНИЙ МНОГОПОЛЮСНИКА (ВАРИАНТЫ) | 2006 |
|
RU2317559C1 |
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ МАТЕРИАЛА | 2013 |
|
RU2571301C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ И СВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2269789C1 |
СПОСОБ КОНТРОЛЯ ВЕЛИЧИНЫ СОПРОТИВЛЕНИЯ СВЯЗИ КОАКСИАЛЬНЫХ КАБЕЛЕЙ | 1990 |
|
SU1774731A1 |
Ю.Б | |||
Иванов, Моделирование процесса передачи импульсов по несогласованной линии связи и питания датчиков, Научно-технический журнал, Телекоммуникационные системы и компютерные сети, N 6 (92), 2015. |
Авторы
Даты
2018-11-26—Публикация
2018-03-07—Подача