Способ создания реактивной тяги пилотируемого космического аппарата Российский патент 2018 года по МПК F02K99/00 B64G1/12 B64G1/40 

Описание патента на изобретение RU2673920C1

Предлагаемое техническое решение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА).

К аналогам данного предложения можно отнести известные способы производства ракетного топлива в космосе, когда компонентами топлива служат кислород и водород, полученные электролизом воды. Технология такого процесса разработана как для орбитального заправочного комплекса (Notardonato W, Johnson W, Swanger A, McQuade W. 2012 In-space propellant production using water. In Proc. AIAA SPACE 2012 Conference and Exposition, number AIAA 2012-5288, 11-13 September 2012, Pasadena, CA; "Электролизно-криогенный производственный комплекс в орбитальных условиях", www.energoobmen.ru/OZK), так и для применения на борту КА (патенты RU 2215891 от 10.11.2003, МПК: F02K 11/00 (2006.01), RU 2310768 от 20.11.2007, МПК: F02K 11/00 (2006.01), B64G 1/40 (2006.01).

Недостатком этих способов является то, что они не адаптированы для пилотируемых КА, и электролизные газы используются исключительно для создания реактивной тяги.

В существующих и проектируемых обитаемых орбитальных и напланетных станциях электролизные газы применяются также в системах жизнеобеспечения (СЖО), например, на международной космической станции (МКС) имеется электролизная установка (ЭЛУ) для производства кислорода, однако электролизный водород, так же, как и углекислый газ (УГ), в настоящее время выбрасываются за борт (Гузенберг А.С. и др., Выбор комплекса жизнеобеспечения для экипажей долговременных космических станций, Космическая техника и технологии, №1(8)/2015, с. 67-80).

Более близким к данному изобретению (прототипом) является способ работы, реализованный в импульсной реактивной двигательной установке (патент РФ №2605163 от 20.12.2016, МПК: F02K 99/00 (2009.01), B64G 1/40 (2006.01)) и включающий разложение воды в электролизере, использование кислорода в СЖО, сжатие водорода в компрессоре, его накопление в баллоне и подача водорода без нагрева в струйный ракетный двигатель для создания тяги. Недостатком этого способа является низкая удельная тяга двигателя, поскольку отсутствует повышение температуры газа в двигателе. Кроме того, в прототипе не используется углекислый газ (УГ), который также является отходом жизнедеятельности экипажа на пилотируемом космическом аппарате.

Задача настоящего изобретения - повышение эффективности использования материальных ресурсов за счет исключения непроизводительных потерь газов на борту пилотируемого КА. Выброс любых отработанных газов за борту КА должен осуществляться только через его ДУ.

Техническим результатом предлагаемого решения является повышение тяговооруженности пилотируемого КА, возможность осуществления более длительных его полетов.

Технический результат достигается тем, что в способе создания реактивной тяги пилотируемого КА, включающем получение на борту космического аппарата водорода и кислорода путем электролиза воды с направлением части электролизного кислорода на дыхание экипажа, хранение водорода и оставшегося кислорода под избыточным давлением, направление в заданный момент этих газов в камеру сгорания ракетного двигателя и поджиг там этих газов, а также выделение углекислого газа из воздуха обитаемых отсеков, выделенный из воздуха углекислый газ собирают, компримируют и хранят на борту космического аппарата, а после воспламенения кислородо-водородной смеси в камере сгорания туда направляют собранный углекислый газ с расходом, не прерывающим процесс горения кислородо-водородной смеси. Кроме того, в двигатель водород и кислород подают в массовом соотношении приблизительно 1:4.

Суть предложения состоит в том, что бортовая ЭЛУ КА обеспечивает работу не одной его системы (ДУ или СЖО), а сразу их обеих. При этом отбор части кислорода ДУ для СЖО не только не уменьшает, но даже увеличивает общую массу рабочих газов двигателей (для образования УГ к каждой молекуле кислорода добавляется атом углерода). И хотя УГ является балластным газом, суммарная масса выхлопных газов, выбрасываемых из сопла, существенно возрастает, а это позволяет увеличить суммарный импульс и время работы РД. Кроме того, за счет теплоемкости УГ снижаются тепловые нагрузки на камеру сгорания и сопло.

Реализуется предложенный способ следующим образом. В процессе электролиза воды часть генерируемого кислорода (примерно половина) сразу направляется в СЖО КА. Оставшиеся электролизные газы (кислород и водород) собирают и хранят в баллонах при повышенном давлении для уменьшения объема баллонов. Повышенное давление может создаваться либо электролизером, что более предпочтительно, либо механическими компрессорами. Независимо от работы ЭЛУ, в процессе очистки воздуха, на борту КА собирают УГ, компримируют и хранят также в баллоне. Для выделения и концентрирования УГ может применяться один из известных методов: адсорбционный (как это реализовано на МКС), мембранный, электрохимический, а также метод охлаждения и ожижения (Аврущенко А.Е. и др., Системы электрохимической регенерации воздуха атомных подводных лодок, М., Русская история, 2002 г., с. 117-150). Сжатие УГ может производиться механическим компрессором до давления, близкого к давлению хранения кислорода и водорода.

В заданный момент времени электролизные газы - кислород и водород - подают в камеру сгорания РД и поджигают - происходит запуск ДУ. После воспламенения газов в двигатель начинают подавать УГ, при этом расход его не должен превышать предельно допустимый, чтобы не прервать процесс горения кислородно - водородной смеси. Такой способ последовательной подачи компонентов позволяет провести более быстрый и надежный пуск ДУ. В результате ДУ начинает работать на трехкомпонентном топливе (Н22+СО2) с пониженной температурой горения. Горение и воспламенение смеси такого состава изучено («Водород, свойства, получение, хранение, транспортирование, применение», под ред. Гамбурга Д.Ю., М., Химия, 1989 г., с. 268, рис. 6.5б). В частности, для смеси водород-кислород-УГ с массовым соотношением водорода к кислороду 1:4, пределы воспламенения составляют от 20 до 86% объемного содержания водорода. В приведенном ниже примере соотношение объемов водорода, кислорода и УГ составляет 1:4:0,8, т.е. объемная доля водорода равна 69%. Такая смесь, в соответствии с приведенным источником, близка к оптимальной и обеспечивает скорость горения 600 см/с. В процессе нагрева УГ может вступать в обратимые реакции с водородом, но это не меняет теплотворную способность смеси и общую массу компонентов, а может только уменьшить молекулярную массу продуктов реакции, что благотворно скажется на увеличении скорости истечения смеси. Для дальнейших оценок будем считать, что распада УГ и взаимодействия с водородом не происходит.

Подача водорода и кислорода в массовом соотношении, близком к 1:4, позволяет максимально повысить удельную тягу ДУ (Сарнер С., Химия ракетных топлив, М., Мир, 1969, с. 100). Поскольку электролизер производит водород и кислород при стехиометрическом соотношении 1:8, это означает, что половина электролизного кислорода должна идти в ДУ, а вторая половина - в СЖО.

Оценим характеристики предлагаемого способа на примере годового баланса газов на МКС. В соответствии с имеющимися данными (Гузенберг А.С. и др., Выбор комплекса жизнеобеспечения для экипажей долговременных космических станций, Космическая техника и технологии, №1(8)/2015, с. 72) суточное потребление кислорода одним космонавтом равно 0,86 кг, а в год экипажем из 6 человек составляет 1883 кг, а наработка УГ за это же время - 2102 кг. Примем, что такая же масса кислорода - 1883 кг будет потребляться и для работы ДУ. Тогда для электролизного получения суммарного количества 3766 кг кислорода потребуется 4238 кг воды, при этом водорода будет выделено 471 кг. Общая масса топлива для ДУ складывается из масс водорода, кислорода и УГ и составляет 4457 кг. В связи с дефицитом кислорода в смеси, в ДУ сгорать будет только половина водорода, т.е. 235 кг, при этом истекающий из сопла газ будет включать в себя 235 кг несгоревшего водорода, 2119 кг водяного пара и 2104 кг УГ. Теплоемкость этой смеси равна 9300 кДж/К, что в 1,2 раз выше теплоемкости той же смеси, но без УГ (7830 кДж/К). Во столько же раз снизится нагрев смеси с УГ в камере сгорания ДУ из-за наличия балластного газа. Температура сгорания смеси Н22 в соотношении 1:4 составляет 2977 К (Сарнер С., Химия ракетных топлив, М., Мир, 1969, с. 101). Значит, считая, что начальные температуры газов во всех случаях составляют 300 К, в варианте тройной смеси температура в камере составит 2550 К. При такой температуре теоретическая скорость истечения газов в вакуум составляет: водорода - 8537 м/с, водяного пара - 3154 м/с, УГ - 2043 м/с. Умножив эти величины на массы компонентов и сложив результаты, получаем полный годовой имульс тяги ДУ - 12,98 млн. кгм/с, а удельная тяга ДУ, равная отношению полного импульса к полной массе компонентов составляет 2914 м/с.

В настоящее время (2017 год) для поддержания высоты орбиты МКС ежегодно расходуется около 9 тонн доставляемого топлива (гептил-амил) с удельной тягой 3100 м/с, что дает полный импульс тяги 27,9 млн. кгм/с. Из этого полного импульса 12,98 млн. кгм/с может быть обеспечена предложенным способом, значит, экономия доставляемого топлива составит 12,98⋅106/3100=4187 кг. Таким образом, несмотря на то, что в рассмотренном примере предложенный способ потребует доставки на МКС дополнительно около 2 тонн воды для работы ДУ, он позволяет экономить около 4 тонн в год доставляемого на орбиту топлива. Суммарная экономия доставляемого на МКС груза составляет 2 тонны, что при цене доставки 12 тыс. долларов за килограмм означает годовую экономию 24 млн. долларов.

Похожие патенты RU2673920C1

название год авторы номер документа
Способ эксплуатации пилотируемой орбитальной станции 2017
  • Глухих Игорь Николаевич
  • Терентьев Игорь Петрович
RU2673215C1
Электролизная ракетная двигательная установка и способ её эксплуатации 2017
  • Терентьев Игорь Петрович
  • Щербаков Андрей Николаевич
RU2673640C1
МНОГОРАЗОВАЯ КОСМИЧЕСКАЯ ТРАНСПОРТНАЯ СИСТЕМА ДЛЯ МАССОВОЙ ДОСТАВКИ С ОКОЛОЗЕМНОЙ ОРБИТЫ НА ОКОЛОЛУННУЮ ОРБИТУ ТУРИСТОВ ИЛИ ПОЛЕЗНЫХ ГРУЗОВ И ПОСЛЕДУЮЩЕГО ВОЗВРАЩЕНИЯ НА ЗЕМЛЮ 2019
  • Петрищев Владимир Федорович
RU2736657C1
СПОСОБ ПРОИЗВОДСТВА РАКЕТНОГО ТОПЛИВА В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЁТА 2015
  • Глухих Игорь Николаевич
  • Щербаков Андрей Николаевич
RU2591131C1
ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА 2015
  • Глухих Игорь Николаевич
RU2605163C2
ЖИДКОСТНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА 2021
  • Морозов Владимир Иванович
  • Смирнов Игорь Александрович
  • Голдовский Марк Израильевич
  • Голенков Антон Юрьевич
  • Верютина Татьяна Григорьевна
RU2760369C1
СПОСОБ ЗАЖИГАНИЯ ТОПЛИВНОЙ СМЕСИ В КАМЕРЕ СГОРАНИЯ ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Лукьященко Василий Иванович
  • Беляев Вадим Северианович
  • Юлдашев Эдуард Махмутович
RU2339840C2
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА ИМПУЛЬСНОГО ДЕЙСТВИЯ 2001
  • Подобедов Г.Г.
  • Соколов Б.А.
  • Тупицын Н.Н.
RU2215891C2
СОЛНЕЧНАЯ РАКЕТНАЯ КИСЛОРОДНО-ВОДОРОДНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА ИМПУЛЬСНОГО ДЕЙСТВИЯ 2005
  • Подобедов Георгий Георгиевич
  • Соколов Борис Александрович
  • Тупицын Николай Николаевич
RU2310768C2
ТРАНСПОРТНАЯ КОСМИЧЕСКАЯ СИСТЕМА 1998
  • Иванов Н.Ф.
RU2165870C2

Реферат патента 2018 года Способ создания реактивной тяги пилотируемого космического аппарата

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий получение на борту космического аппарата водорода и кислорода путем электролиза воды с направлением части электролизного кислорода на дыхание экипажа, хранение водорода и оставшегося кислорода под избыточным давлением, направление в заданный момент этих газов в камеру сгорания ракетного двигателя и поджиг этих газов, а также выделение углекислого газа из воздуха обитаемых отсеков, выделенный из воздуха углекислый газ собирают, компримируют и хранят на борту космического аппарата, а после воспламенения кислородоводородной смеси в камере сгорания туда направляют собранный углекислый газ с расходом, не прерывающим процесс горения кислородоводородной смеси. При этом в двигатель водород и кислород подают в массовом соотношении приблизительно 1:4. Изобретение обеспечивает повышение тяговооруженности пилотируемого КА, а также в возможности осуществления более длительных его полетов. 1 з.п. ф-лы.

Формула изобретения RU 2 673 920 C1

1. Способ создания реактивной тяги пилотируемого космического аппарата, включающий получение на борту космического аппарата водорода и кислорода путём электролиза воды с направлением части электролизного кислорода на дыхание экипажа, хранение водорода и оставшегося кислорода под избыточным давлением, направление в заданный момент этих газов в камеру сгорания ракетного двигателя и поджиг там этих газов, а также выделение углекислого газа из воздуха обитаемых отсеков, отличающийся тем, что выделенный из воздуха углекислый газ собирают, компримируют и хранят на борту космического аппарата, а после воспламенения кислородоводородной смеси в камере сгорания туда направляют собранный углекислый газ с расходом, не прерывающим процесс горения кислородоводородной смеси.

2. Способ по п. 1, отличающийся тем, что в двигатель водород и кислород подают в массовом соотношении приблизительно 1:4.

Документы, цитированные в отчете о поиске Патент 2018 года RU2673920C1

ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА 2015
  • Глухих Игорь Николаевич
RU2605163C2
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА ИМПУЛЬСНОГО ДЕЙСТВИЯ 2001
  • Подобедов Г.Г.
  • Соколов Б.А.
  • Тупицын Н.Н.
RU2215891C2
US 5279484 A, 18.01.1994
US 3982878 A, 28.09.1976.

RU 2 673 920 C1

Авторы

Глухих Игорь Николаевич

Терентьев Игорь Петрович

Даты

2018-12-03Публикация

2017-10-05Подача