Изобретение относится к способам предотвращения биообрастания на водозаборах систем водоснабжения и систем охлаждения конденсаторов тепловых электростанций.
Трубопроводы на водозаборах (особенно на зарегулированных источниках) подвержены внутреннему обрастанию гидробионтами, среди которых наиболее часто присутствуют моллюски дрейссены. Обрастание это нередко бывает значительным, что приводит к критическим потерям напора во всасывающей системе водозабора и к угрозе остановки насосных станций. В системе водоснабжения личинки дрейссены редко перемещаются самостоятельно, а в основном - под влиянием потока воды. Процесс колонизации новых поверхностей начинают мелкие микроорганизмы (грибки и бактерии). Они очень быстро покрывают все доступные поверхности трубопроводов, образуя тонкую пленку, напоминающую прозрачный гель.
Слой дрейссены на внутренних стенках трубопроводов достигает 7…10 см, а масса обрастаний до 7 кг/м2. При таком обрастании существенно возрастает сопротивление трубопроводов, что влечет дополнительные расходы электроэнергии на подачу воды. В связи с этим борьбу с дрейссеной на действующих водозаборах необходимо рассматривать не только как средство обеспечения бесперебойного водоснабжения, но и как меру экономии электроэнергии. Отсюда видно, насколько важно предотвратить попадание гидробионтов в водоприемные устройства [Багоцкий Ю.Б., Вельмина Е.С. Борьба с биообрастаниями на водопроводных станциях. - В кн.: Повышение качества питьевой воды (Материалы семинара в Московском Доме научно-технической пропаганды им. Ф.Э. Дзержинского). М., 1977, 160 с.].
Известны способы предотвращения биообрастания на водозаборах в практике коммунального водоснабжения, при которых используют реагентные (хлорирование, озонирование, воздействие препаратами серебра) методы обеззараживания воды. Должный эффект достигается внесением в воду биологически активных химических соединений [Водоснабжение. Проектирование систем и сооружений: В 3-х т. - Т. 2. Очистка и кондиционирование природных вод / Научно-методическое руководство и общая редактура д-ра техн. наук, проф. Журбы М.Г. Вологда-Москва: ВоГТУ, 2001. - 324 с.].
Недостатком известных способов является присутствие в обработанной воде свободного хлора, ухудшающее ее органолептические свойства и являющееся причиной образования побочных галогенсодержащих соединений. В настоящее время для обеззараживания питьевой воды также предлагается применение диоксида хлора (ClO2), который обладает рядом преимуществ по сравнению с хлорированием, таких как: более высокое бактерицидное и дезодорирующее действие, отсутствие в продуктах обработки хлорорганических соединений, улучшение органолептических качеств воды, отсутствие необходимости перевозки жидкого хлора. Однако диоксид хлора дорог и должен производиться на месте по достаточно сложной технологии. Его применение имеет перспективу для установок относительно небольшой производительности. При химических способах обеззараживания питьевой воды для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность его контакта с водой. Доза реагента определяется пробным обеззараживанием или расчетными методами. Для поддержания необходимого эффекта при химических способах обеззараживания питьевой воды доза реагента рассчитывается с избытком (остаточный хлор, остаточный озон), гарантирующим уничтожение микроорганизмов, попадающих в воду некоторое время после обеззараживания.
Известны также безреагентные (ультрафиолетовые лучи, воздействие импульсными электрическими разрядами, гамма-лучами и др.) методы обеззараживания воды [Рябченко В.А., Русанова Н.А., Коробейникова Л.И. Современные методы борьбы с биологическими обрастаниями и отложениями в системах хозяйственно-питьевого водоснабжения. Обзорная информация ЦБНТИ МЖКХ РСФСР, серия «Водоснабжение и канализация», вып. 1 (32). - М. 1976, 64 с.].
Недостатком известных способов является то, что необходимо подвести к единице объема воды заданное количество энергии, определяемое как произведение интенсивности воздействия (мощности излучения) на время контакта. Технологии являются энергоемкими и экономически затратными.
Известен патент на изобретение №2622886 «Способы защиты от обрастания и защиты рыб и рыбозащитное устройство комплексного воздействия». Устройство включает водопроницаемый экран, состоящий из кассет, выполненных из электропроводящего материала и изолированных друг от друга, и электронное оборудование. На кассеты подается электрический ток, причем катодом поочередно становится одна кассета или группа из двух и более кассет, а все оставшиеся или некоторые из оставшихся кассет становятся анодом. Затем катодом поочередно становится каждая последующая кассета или последующая группа кассет по цепочке, или через одну кассету или группу кассет, или в шахматном порядке. Способ защиты от биологического обрастания предусматривает подачу импульсного тока между кассетами. Способ защиты от биологического обрастания и защиты рыб от попадания в водозаборное сооружение предусматривает подачу импульсного тока с перемещением максимума катодного потенциала вдоль водопроницаемого экрана. Группа изобретений обеспечивает повышение эффективности рыбозащитного оборудования.
Задачей данного патента является обеспечение комплексной работы устройства, позволяющей защитить конструкции рыбозащитного устройства и водозаборов (трубопроводов, кабелей и т.д.) от биологического обрастания и повысить эффективность защиты рыб и других гидробионтов, обитающих в акватории действия водозаборного сооружения, и предотвратить их гибель вследствие попадания в водозабор, предотвратить попадание в водозабор мусора, льда, шуги, которые могут вызвать выход из строя насосного оборудования, т.е. обеспечивает другие задачи.
Известен способ, позволяющий на основе активации поверхности решетки оголовка ВЗС анодным током, получать в диффузионном слое вещества класса ферроценов, способных обеспечить защиту металлической решетки от биообрастания [Болеев А.А. Предотвращение биологического обрастания металлических конструкций оголовка водозаборных сооружений/Авторефератдисс. на соискание ученой степени канд. техн. наук. Волгоград, 2013. Ю.И. Олянский, А.А. Болеев, А.А. Сахарова, Д.О. Игнаткина, П.Ф. Юрин, А.А. Войтюк. Способ повышения надежности функционирования систем водного хозяйства. Интернет-Вестник ВолгГАСУ. Сер.: Политематическая. 2013. Вып. 2(27)].
Недостатком способа является анодное разрушение металла трубопровода и высокий расход электроэнергии.
Наиболее близким к предложенному устройству является используемое для предотвращения биообрастания на водозаборах устройство Акваклер [ООО «Гидрофлоу», www.h-flow.ru]. Данная технология базируется на применении генератора высокочастотных электромагнитных импульсов, работой которого управляет микропроцессор. Устройством формируются импульсы переменной частоты, имеющие форму экспоненциально-затухающей синусоиды. Передача электромагнитного поля в трубопровод осуществляется с помощью магнитопровода из ферритовых пластин, который собирается вокруг трубопровода. В трубопроводе наводится ЭДС самоиндукции и возникает вторичное (собственное) электромагнитное поле. При помощи постоянно корректируемых импульсов устройство обеспечивает возникновение и поддержание электромагнитного резонанса с эффектом «стоячей волны». Электромагнитное поле сообщает электрический заряд находящимся в воде микроорганизмам, и те гибнут. При работе Акваклер внутренние поверхности трубопроводов приобретают слабый положительный заряд. Вследствие притяжения молекул воды к заряженным поверхностям происходит формирование нескольких устойчивых слоев из одинаково ориентированных молекул воды. Так у поверхностей трубопроводов создается несколько слоев чистой (на молекулярном уровне) воды, которые представляют для грибков и бактерий устойчивую преграду, которая препятствует закреплению микроорганизмов на поверхности.
Недостатком аналога является то, что трубопровод, приобретая положительный потенциал, подвергается анодному разрушению.
Технический результат предлагаемого способа заключается в предотвращении анодного разрушения трубопровода при обеспечении очистки трубопровода водозабора от биоотложений (в том числе дрейссены), а также в уменьшении арсенала специальных технических средств для осуществления очистки трубопровода водозабора от биоотложений и отсутствии необходимости перестраивать технологический процесс.
Указанный технический результат заявляемого способа достигается тем, что электрическую станцию защиты постоянного тока подключают «плюсовым» электродом к защищаемому от биообрастания металлическому трубопроводу, а «минусовой» электрод подключают к катоду, при этом «плюсовой» электрод подключают к защищаемому от биообрастания металлическому трубопроводу через протектор, который предотвращает анодное разрушение металлического трубопровода. При этом электрический потенциал на электродах не должно превышать значения стандартного электродного потенциала материала трубопровода. Это связано с тем, что электрохимическая коррозия наблюдается при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в воде дюралюминия с никелем интенсивно растворяться будет именно дюралюминий.
Мембранной теорией биопотенциалов доказано, что в основе биопотенциалов лежит пространственное разделение положительных и отрицательных электрических зарядов между наружной и внутренней поверхностью мембраны любой клетки. В состоянии покоя наружная поверхность клетки всегда заряжена положительно, а внутренняя -отрицательно, и такой трансмембранный «потенциал покоя» составляет порядка 0,05-0,09 В.
Вследствие притяжения молекул воды к заряженным поверхностям происходит формирование нескольких устойчивых слоев из одинаково ориентированных молекул воды. Так у поверхностей трубопроводов создается несколько слоев чистой (на молекулярном уровне) воды, которые представляют для грибков и бактерий (в том числе дрейссены) устойчивую преграду, которая препятствует закреплению микроорганизмов на поверхности трубопровода вследствие их положительного заряда.
Технико-экономический эффект заключается в сокращении расхода электроэнергии на перекачивание воды насосами из-за отсутствия обрастания трубопровода биозагрязнениями (в том числе дрейссеной), а также снижении затрат на эксплуатацию и очистку трубопровода водозабора от биоотложений (в том числе дрейссены). Способ осуществляется на серийно выпускаемом оборудовании.
На фиг. 1 показана принципиальная схема осуществления способа предотвращения биообрастания на водозаборах. Схема включает в себя следующие элементы: 1 - металлический трубопровод водозабора; 2 - протектор; 3 - электрическая станция защиты постоянного тока; 4 - катод с внутренним размещением; 5 - катод с внешним размещением.
Способ осуществляется следующим образом.
К защищаемому от биообрастания (в том числе дрейссены) металлическому трубопроводу водозабора 1 через протектор 2 «плюсовым» электродом подключают электрическую станцию защиты постоянного тока 3, в качестве которой может быть применена серийно выпускаемая станция катодной защиты, используемая для катодной защиты газопроводов (например, Тверца- 900), а «минусовой» электрод подключают к катоду (катод может быть размещен как внутри трубопровода 4, так и снаружи 5, в виде траншейного заземлителя. В стесненных условиях, имея ввиду, что расстояние между электродами может превышать 7 м, изготавливают вертикальный катодный заземлитель, где не требуются траншейные, но необходимы уже более дорогие работы - бурение скважин.
Электрический потенциал на электродах не должен превышать значения стандартного электродного потенциала материала трубопровода (например, для Fe = -0,44 В). При этом, «плюсовой» электрод подключают к защищаемому от биообрастания трубопроводу через протектор, который изготавливают из сплавов на основе магния, алюминияилицинка, обладающих стабильным во время эксплуатации электродным потенциалом более отрицательным, чем потенциал защищаемого трубопровода (например, цинковый протектор), который предотвращает анодное разрушение трубопровода. (Например, анодные покрытия имеют более отрицательный потенциал, чем потенциал основного металла. По отношению к стали анодными покрытиями являются цинковое, кадмиевое, марганцевое и др. В случаях применения анодных покрытий условие сплошности необязательно. При наличии дефектов в покрытии при действии агрессивных растворов возникает коррозионный гальванический элемент, в котором основной металл будет катодом, а металл покрытия - анодом, поэтому защищаемое изделие не будет корродировать).
Создаваемые у поверхности защищаемого трубопровода несколько слоев чистой (на молекулярном уровне) воды, представляют для грибков и бактерий (в том числе дрейссены) устойчивую преграду, которая препятствует закреплению микроорганизмов (в том числе дрейссены) на поверхности трубопровода вследствие их положительного заряда.
Таким образом, предлагаемый способ позволяет, подавляя сами бактерии и не давая им закрепиться на стенках трубопроводов, препятствует образованию биопленки (в том числе дрейссены).
Технико-экономический эффект представлен на примере МУП «Водоканал» г. Ставрополя, который на борьбу со зловредными моллюсками ежегодно тратит до 50 миллионов рублей (http://www.water26.ru/index.php/information/news/item/5-den-sengileevskogo-vodokhranilishcha), (дополнительные расходы на электроэнергию, возникающие вследствие увеличения сопротивления трубопроводов из-за обрастания дрейссеной слоем, толщиной 10-15 см за год, а также на очистку трубопроводов от этих отложений).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБЫ ЗАЩИТЫ ОТ ОБРАСТАНИЯ И ЗАЩИТЫ РЫБ И РЫБОЗАЩИТНОЕ УСТРОЙСТВО КОМПЛЕКСНОГО ВОЗДЕЙСТВИЯ | 2016 |
|
RU2622886C2 |
БИОЦИД И ДИСПЕРГАТОР ОТЛОЖЕНИЙ | 2004 |
|
RU2259323C1 |
УСТРОЙСТВО ДЛЯ КАТОДНОЙ ЗАЩИТЫ С АВТОНОМНЫМ ПИТАНИЕМ | 2011 |
|
RU2486289C2 |
Способ очистки от биообрастаний систем технического водоснабжения | 1975 |
|
SU560835A1 |
СПОСОБ ЗАЩИТЫ ПОДВОДНЫХ КОНСТРУКЦИЙ И ОБОРУДОВАНИЯ ОТ БИООБРАСТАНИЯ | 2012 |
|
RU2523841C2 |
МНОГОСЛОЙНОЕ КОМБИНИРОВАННОЕ ПРОТИВООБРАСТАЮЩЕЕ ПОКРЫТИЕ, ОБЕСПЕЧИВАЮЩЕЕ РЕПЕЛЛЕНТНО-ХЕМОБИОЦИДНУЮ ЗАЩИТУ | 2011 |
|
RU2478114C1 |
СПОСОБ ЗАЩИТЫ ПОДЗЕМНЫХ МЕТАЛЛИЧЕСКИХ МНОГОНИТОЧНЫХ ТРУБОПРОВОДОВ ОТ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2204626C2 |
Способ подавления биообрастаний в системах технического водоснабжения | 1986 |
|
SU1381075A1 |
Защитная оболочка для находящихся в водной среде бетонных поверхностей | 1990 |
|
SU1752860A1 |
СПОСОБ ПРЕДОТВРАЩЕНИЯ ОСАЖДЕНИЯ НАКИПИ НА ТЕПЛООБМЕННЫХ ПОВЕРХНОСТЯХ | 1997 |
|
RU2120916C1 |
Изобретение относится к способам предотвращения биообрастания на водозаборах систем водоснабжения и систем охлаждения конденсаторов тепловых электростанций. Электрическую станцию защиты постоянного тока подключают «плюсовым» электродом к защищаемому от биообрастания металлическому трубопроводу через протектор, который предотвращает анодное разрушение металлического трубопровода, а «минусовой» электрод подключают к катоду. Электрический потенциал на электродах не должен превышать значения стандартного электродного потенциала материала трубопровода. Вследствие притяжения молекул воды к заряженным поверхностям происходит формирование нескольких устойчивых слоев из одинаково ориентированных молекул воды. Так у поверхностей трубопроводов создается несколько слоев чистой (на молекулярном уровне) воды, которые представляют для грибков и бактерий (в том числе дрейссены) устойчивую преграду, которая препятствует закреплению микроорганизмов на поверхности трубопровода вследствие их положительного заряда. 1 ил.
Способ предотвращения биообрастания на водозаборах с металлическим трубопроводом, в котором электрическую станцию защиты постоянного тока подключают «плюсовым» электродом через протектор к защищаемому от биообрастания металлическому трубопроводу, а «минусовой» электрод подключают к катоду, при этом электрический потенциал на электродах не должен превышать значения стандартного электродного потенциала материала трубопровода.
ООО "Гидрофлоу" | |||
Найдено из Интернет http://www.h-flow.ru/, дата размещения на сайте 21.02.2009, [найден 2018-10-26] | |||
СПОСОБЫ ЗАЩИТЫ ОТ ОБРАСТАНИЯ И ЗАЩИТЫ РЫБ И РЫБОЗАЩИТНОЕ УСТРОЙСТВО КОМПЛЕКСНОГО ВОЗДЕЙСТВИЯ | 2016 |
|
RU2622886C2 |
КОМПЛЕКСНАЯ ЗАЩИТА ОТ КОРРОЗИИ И ОБРАСТАНИЯ (ВАРИАНТЫ) | 1995 |
|
RU2113544C1 |
CN 102616894 A, 01.08.2012 | |||
CN 101434430 A, 20.05.2009. |
Авторы
Даты
2019-01-10—Публикация
2018-01-30—Подача