Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.
В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Статические испытания на прочность сверхзвуковых самолетов / А.Н. Баранов [и др.]. М: Машиностроение. 1974. 344 с; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. Т.З. Экспериментальные исследования / Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., Под ред. Ю.В. Полежаева и С.В. Резника. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 264 с.: ил.). Но из-за огромных материальных затрат, которые требуются при испытании натурных конструкций в таких установках широкого распространения в практике наземных испытаний данные установки не получили.
Стенды радиационного нагрева получили наиболее широкое распространение в практике наземных испытаний, так как они просты в эксплуатации и позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя.
Однако стандартные стенды радиационного нагрева (на базе ламп инфракрасного излучения) имеют ряд ограничений. Для элементов летательных аппаратов сложной формы, когда геометрические размеры конструкции сравнимы с размерами нагревателей, присутствует большая погрешность задания температурного поля. Кроме того, при задании высоких температур (выше температуры смягчения кварца) инфракрасные нагреватели выходят из строя.
Наиболее близким по технической сущности является способ теплового нагружения обтекателей ракет из неметаллических материалов по патенту РФ №2517790, МПК7 G01M 9/04, G01N 25/72, опубл. 27.05.2014 г.
В этом способе тепловое нагружение осуществляют за счет пропускания электрического тока через эквидистантный поверхности обтекателя нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым.
Недостатком способа является необходимость создания большого перепада давления по стенке нагревателя для его прижатия к ограничителю из теплоизоляционного материала и фиксации его положения относительно обтекателя, это приводит к большому расходу инертного газа, что, в свою очередь, значительно снижает максимальную рабочую температуру нагревателя.
Техническим результатом заявляемого изобретения является расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции.
Указанный технический результат достигается тем, что в способе теплового нагружения обтекателей ракет из неметаллических материалов, включающий нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры, токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым, отличающийся тем, что сборка: обтекатель, нагреватель и ограничитель из теплоизоляционного материала - размещается в корпусе, в котором создается пониженное давление, а ограничитель из теплоизоляционного материала охлаждается по наружной поверхности потоком атмосферного воздуха, поступающего через заслонки в основании корпуса.
Предлагаемый способ отличается от прототипа тем, что позволяет увеличить максимальную рабочую температуру нагревателя за счет снижения расхода инертного газа, охлаждающего нагреватель. Инертный газ, нагнетаемый в зазор между наружной поверхностью обтекателя и нагревателем, не используется для фиксации положения нагревателя, а необходим лишь для создания инертной среды. Это расширяет температурный диапазон работы нагревателя.
Например, для нагревателя из углеродных тканей максимальная рабочая температура может достигать 2400°С, а для нагревателя из вольфрамовой фольги - до 3000°С.
Способ иллюстрирует схема, представленная на фигуре. Нагреватель 2 располагают между обтекателем 1 и ограничителем теплоизоляционного материала 3, причем в зазоре между нагревателем 2 и обтекателем 1 нагнетают инертный газ, а для подачи напряжения на нагреватель 2 используют шины 4, причем сборка: обтекатель 1, нагреватель 2 и ограничитель из теплоизоляционного материала 3 размещается в корпусе 5, в котором создается пониженное давление, например за счет установки дымососа, а ограничитель из теплоизоляционного материала охлаждается по наружной поверхности потоком атмосферного воздуха, поступающего через заслонки 6 в верхнем основании корпуса 7.
Нагреватель может быть выполнен из углеродных тканей или фольги из тугоплавких материалов, например из вольфрама или молибдена. При выполнении нагревателя из металлической фольги его поверхность должна быть перфорирована. Ограничитель из теплоизоляционного материала может быть изготовлен из керамических пластин.
Заявленный способ дает возможность воспроизвести аэродинамический нагрев обтекателей ракет из неметаллических материалов при высоких температурах, например для изделий из керамики до 2100°С на наружной поверхности.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2012 |
|
RU2517790C1 |
Способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов | 2017 |
|
RU2670725C9 |
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2015 |
|
RU2583353C1 |
Способ тепловых испытаний обтекателей ракет из неметаллических материалов | 2016 |
|
RU2632031C1 |
Способ испытания обтекателей ракет из неметаллических материалов | 2017 |
|
RU2637176C1 |
Инфракрасный нагреватель | 2018 |
|
RU2694244C1 |
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2011 |
|
RU2456568C1 |
Способ управления нагревом при тепловых испытаниях антенных обтекателей ракет | 2017 |
|
RU2676385C1 |
СПОСОБ ТЕПЛОВЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2015 |
|
RU2599460C1 |
Способ теплового нагружения обтекателей ракет из неметаллических материалов | 2017 |
|
RU2676397C1 |
Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов. Предложен способ теплового нагружения обтекателей ракет из неметаллических материалов, который включает нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры. Токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым. Сборка: обтекатель, нагреватель и ограничитель из теплоизоляционного материала - размещается в корпусе, в котором создается пониженное давление, а ограничитель из теплоизоляционного материала охлаждается по наружной поверхности потоком атмосферного воздуха, поступающего через заслонки в основании корпуса. Технический результат - расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции. 1 ил.
Способ теплового нагружения обтекателей ракет из неметаллических материалов, включающий нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры, токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым, отличающийся тем, что сборка: обтекатель, нагреватель и ограничитель из теплоизоляционного материала - размещается в корпусе, в котором создается пониженное давление, а ограничитель из теплоизоляционного материала охлаждается по наружной поверхности потоком атмосферного воздуха, поступающего через заслонки в основании корпуса.
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2012 |
|
RU2517790C1 |
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2011 |
|
RU2456568C1 |
CN 202362214 U, 01.08.2012 | |||
US 5942682 A, 24.08.1999 | |||
CN 102721612 A, 10.10.2012 | |||
Прибор для вычерчивания дуг окружностей | 1950 |
|
SU88147A1 |
Авторы
Даты
2019-01-17—Публикация
2018-02-02—Подача