Способ биологической рекультивации техногенного ландшафта тепловой электроцентрали с использованием микроводоросли хлорелла Российский патент 2019 года по МПК A01B79/02 

Описание патента на изобретение RU2677983C1

Изобретение относится к области биотехнологии, рекультивации нарушенных земель, защите окружающей среды, в частности, от пыления золоотвалов тепловых электростанций.

Известен способ реабилитации нарушенных земель (патент №2567900, 2015 г.). Способ включает формирование плодородного слоя с включением измельченных растительных остатков. При этом по краям нарушенного участка формируют гребни из цеолитсодержащих глин местного происхождения различного механического и химического состава. Участок покрывают слоем глины аланита в пределах 8-10 т/га, смешанным с кукурузными кочерыжками, растворенными в послеспиртовой барде в соотношении 1:1 и составляющей 20% от общего объема вносимой смеси. На следующий год после уплотнения верхнего слоя высевают многолетние травы.

Данный способ достаточно трудоемок. При рекультивации более масштабных территорий требуется огромное количество глины аланита. Травы высеваются только на второй год.

Известен также способ, при котором на поверхность хвостохранилищ наносят цеолитовую гидросмесь, включающий рыхление поверхностного слоя, посев многолетних трав и уплотнение верхней части (патент №2513468, 2014 г.). Способ усложнен тем, что для формирования почвообразующего слоя производят предварительную обработку поверхностного наружного участка, а в качестве связующего состава применяют водорастворимые полимеры. Все эти технологические приемы повышают затраты на реализацию технического решения.

Наиболее близким техническим решением является способ, при котором на поверхность почвы наносят слой кольматанта общим объемом не менее 20% пор формируемого плодородного слоя, а в качестве органического удобрения вносят измельченные растительные остатки до 40% (патент №2244393, 2005 г.).

Недостатком способа-прототипа является сложность технического решения. При нанесении слоя неорганических веществ кольматанта нарушается аэрация участка, снижается фильтрация, в результате чего измельченные растительные остатки разлагаются медленно.

Задача способа - создание растительного покрова с целью закрепления субстрата и окультуривания техногенного ландшафта, для предотвращения пыления золоотвалов тепловой электроцентрали и улучшения процесса почвообразования.

Предложен способ фитомелиорации техногенного ландшафта тепловой электроцентрали с помощью посева злаковых и бобовых трав с внесением в качестве удобрения водного раствора зеленой микроводоросли хлорелла (Chlorella vulgaris).

Технический результат - предотвращение пыления золоотвала, закрепление субстрата.

Техническое решение предлагаемого нами способа заключается в том, что необходимо создать устойчивые растительные сообщества с высокими защитными функциями, которые снижают эрозионные процессы на рекультивируемой территории, ускоряют процессы естественного восстановления компонентов биогеоценозов, а главное, предотвращают пыление. Для этого в качестве культур-фитомелиорантов нужно использовать многолетние бобовые и злаковые травы, а именно донник, люцерну, клевер, колумбову траву (можно в смеси) с добавлением в качестве удобрения водного раствора зеленой микроводоросли хлорелла (Chlorella vulgaris) в дозе 5 л/га. Норма высева трав увеличена в 2-2,5 раза от традиционной (бобовые 40-50 кг/га, колумбова трава 50-60 кг/га). Высевать следует в наиболее ранние сроки (март-апрель), подсевать можно в течение всего вегетационного периода. Перед посевом семена лучше прорастить (но это не является обязательным условием). Поливать раствором хлореллы оптимально 1-2 раза в месяц.

Способ осуществляется следующим образом.

До начала рекультивации производится оценка естественного зарастания нарушенных земель. Понимание процессов восстановления растительного покрова техногенного ландшафта невозможно без детального изучения естественной растительности. В 2013-2017 гг.проводились полевые геоботанические исследования на золоотвале ТЭЦ №1 г. Курска в период максимального развития растительности - в июле-августе. Данная местность частично имеет растительный покров (очень скудный), представленный сообществами с доминированием гидрофитов. В основном представлен сорно-рудеральный комплекс. Наиболее распространен тростник обыкновенный (Phragrmtes australis). Помимо тростника произрастают и другие виды с преобладанием трав семейства астровые. Но данных растений недостаточно, чтобы закрепить субстрат. Культурные растения-фитомелиоранты должны быть неприхотливыми и иметь развитую корневую систему.

Затем необходимо сделать анализ исследуемых субстратов. Результаты агрохимического анализа изучаемого субстрата говорят о том, что на его поверхности возможно создание травянистых фитоценозов (содержание органического вещества 5,3%, подвижные азот, фосфор, калий - 63, 212, 136 мг/кг, соответственно, гидролитическая кислотность 0,31 мг-экв, обменная кислотность 7,1).

Данные таблицы 1 свидетельствуют о том, что содержание тяжелых металлов в золе не превышает предельно допустимых концентраций (ПДК).

Вопрос использования микроводорослей в растениеводстве изучен недостаточно. Однако в литературе (Лукьянов В.А., Стифеев А.И. Прикладные аспекты применения микроводорослей в агроценозе / В.А. Лукьянов, А.И. Стифеев. - Курск, 2014. - 186 с.) имеются сообщения о том, что метод биологической мелиорации, заключающийся в орошении почв удобрительной суспензией живых культур микроводорослей (альголизация), способствует интенсификации процесса повышения плодородия в результате обогащения почвы значительным количеством микроэлементов и пополнения ее бактериальной микрофлоры. Микроводоросли являются богатейшим источником простейших белков (около 50%), минералов, витаминов, аминокислот, антиоксидантов и онкопротекторов, обладают сахаропонижающим эффектом, что объясняет их применение в различных сферах человеческой деятельности. Целью использования хлореллы в рассматриваемом опыте являлось выяснение перспективы замены устоявшейся системы традиционных удобрений (например, отходов производства - сточных вод и их осадка, требующих предварительной очистки).

Для опытов были выбраны растения (люцерна желтая, клевер красный, донник желтый, горчица черная, эспарцет, лисохвост, колумбова трава), биологические особенности которых (быстрая акклиматизация, устойчивость к отрицательным свойствам грунта, засухоустойчивость, устойчивость к болезням и вредителям, широкая экологическая пластичность) перспективны для создания устойчивых фитоценозов на рекультивируемой территории.

Пример 1. Лабораторный опыт в вегетационных сосудах. В 2014 г. была исследована возможность произрастания различных культурных трав на техногенных субстратах - на золе ТЭЦ-1 и, для сравнения, на лессовидном суглинке, взятом вблизи промышленного отвала Михайловского ГОКа (Железногорский р-н Курской обл.). С данной целью были проведены лабораторные опыты в фитолаборатории Курской ГСХА с использованием вегетационных сосудов. Культурные травы (люцерна, клевер, колумбова трава, горчица, донник, эспарцет, лисохвост) высевались на каждом субстрате. Из мелиорантов применялись сточные воды (в дозе 80 мл на 1 дм3 субстрата), осадок сточных вод (80 г на 1 дм3) и водный раствор микроводоросли хлорелла (1,2 мл на 1 дм3). Для выявления влияния мелиоранта проводился также контрольный вариант опыта (без внесения мелиоранта).

Анализ продуктивности корневой массы растений, выращенных на техногенных субстратах в лабораторном опыте, показал, что для обеспечения устойчивости поверхности из всех задействованных видов трав наиболее подходит колумбова трава (семейство злаковые). Данное растение имело наиболее массивные (1-2 г) и разветвленные корни. Корневая масса остальных трав была на порядок меньше (до 0,2 г). Что касается мелиорантов, наиболее эффективными оказались микроводоросль хлорелла и осадок сточных вод (табл. 2). Но сточные воды и их осадок требуют предварительного обеззараживания, что несет дополнительные затраты и потенциальную возможность большего загрязнения, а хлорелла является экологически чистым удобрением. Поэтому именно ее рекомендуется использовать.

Пример 2. Мелкоделяночный полевой опыт. В 2015 г. были продолжены экспериментальные исследования уже непосредственно на золоотвале ТЭЦ-1. При закладке микрополевого опыта на данном техногенном ландшафте ограничились тремя видами растений. Кроме колумбовой травы, обладающей наиболее мощной корневой системой, оставили также бобовые -донник желтый и клевер. Поскольку бобовые культуры способствуют образованию гумуса и накоплению азота, уменьшают концентрацию тяжелых металлов, усиливают водо- и воздухопроницаемость почв, их присутствие необходимо для долгосрочного поддержания растительности на рекультивируемой территории. Мелиоранты те же, что в 2014 г.

Всего было 12 делянок площадью 0,25 м2. Количество делянок (вариантов опыта) определялось числом возможных комбинаций культур и удобрений. Посев производился вручную. В каждой делянке высевались по 16 проросших семян. Окончательная оценка посевов и уборка проводилась 5 сентября. Высота и масса трав определялась для всех растений, а затем усреднялась.

Продуктивность трав в естественных условиях оказалась ожидаемо выше, чем в лабораторном опыте. Биометрические показатели растений соответствовали стандартным размерам (табл. 3). Микроводоросль хлорелла показала себя перспективным мелиорантом во всех вариантах опыта.

Также в микрополевом опыте мы изучили влияние окультуривания золоотвала на микробиологическую активность субстрата. Микроорганизмы являются минерализаторами растительных и животных осадков, они очищают почву от токсикантов и тяжелых металлов. Они играют значительную роль в накоплении в почве основного компонента плодородия - гумуса. Основная масса почвенных микроорганизмов является сапрофитами, использующими для питания органические вещества, среди которых значительное место занимает клетчатка (целлюлоза), которую разлагает специфическая группа целлюлозных микроорганизмов. От их активности во многом зависит скорость разложения целлюлозы (Мишустин Е.Н. Ассоциация почвенных микроорганизмов. - М: Наука, 1975. 107 с.). В этой связи были проведены исследования, характеризующие скорость разложения клетчатки, которая была представлена льняным полотном, с целью изучения биологической активности субстрата золоотвала в процессе его окультуривания. Размер полотна составлял 10×5 см2. Учитывалась масса полотна до и после закладки. Время экспозиции - 50 суток, повторность - трехкратная.

По результатам опыта была определена активность целлюлозоразрушающих организмов (табл. 4).

Данные таблицы 4 свидетельствуют о том, что в контрольном варианте активность была минимальной. В вариантах окультуривания поверхности золоотвала с использованием фитомелиорации отмечается заметное увеличение активности микроорганизмов.

Следовательно, предлагаемый способ позволяет защитить окружающую среду от пыления техногенного ландшафта и закрепить исследуемый субстрат уже в первый год проведения рекультивационных мероприятий. Кроме того, для рекультивации используют экологически чистые средства-травянистые растения и микроводоросли, исключая, таким образом, дополнительное загрязнение окружающей среды применяемыми средствами рекультивации.

*Примечание: в числителе указана длина (см), а в знаменателе масса (г).

*Примечание: в числителе указана длина (см), а в знаменателе масса (г).

Похожие патенты RU2677983C1

название год авторы номер документа
СПОСОБ ВОССТАНОВЛЕНИЯ ПОЧВЕННОГО ПЛОДОРОДИЯ 2002
  • Сатубалдин К.К.
  • Салангинас Л.А.
RU2224398C1
СПОСОБ БИОЛОГИЧЕСКОЙ РЕКУЛЬТИВАЦИИ ЗАГРЯЗНЕННЫХ ЗЕМЕЛЬ КАРТ ШЛАМОНАКОПИТЕЛЕЙ ОТХОДОВ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ 2010
  • Добрыднев Евгений Павлович
  • Парахуда Нина Андреевна
  • Мамась Наталья Николаевна
RU2426291C1
СПОСОБ ЗАЛУЖЕНИЯ ЗОЛООТВАЛОВ 2005
  • Ищенко Александр Васильевич
  • Иванова Нина Анисимовна
  • Гурина Ирина Владимировна
  • Бирюков Валентин Васильевич
  • Скляренко Елена Олеговна
RU2293455C2
Способ задернения золоотвалов электростанций 1957
  • Сигалов Б.Я.
SU148977A1
СПОСОБ МЕЛИОРАЦИИ СОЛОНЦОВЫХ ПОЧВ 2015
  • Уполовников Дмитрий Александрович
  • Денисов Евгений Петрович
  • Денисов Константин Евгеньевич
  • Зуев Валентин Васильевич
  • Полетаев Илья Сергеевич
RU2581672C1
СПОСОБ РЕАБИЛИТАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ЗЕМЕЛЬ 2008
  • Заалишвили Владислав Борисович
  • Бекузарова Сарра Абрамовна
  • Батаев Дени-Карим Султанович
  • Мажиев Хасан Нажоевич
RU2396133C2
СПОСОБ ВОССТАНОВЛЕНИЯ ЗАГРЯЗНЕННЫХ ПОЧВ, ГРУНТОВ И ВОД 2002
  • Сатубалдин К.К.
  • Салангинас Л.А.
RU2243638C2
СПОСОБ ВОССТАНОВЛЕНИЯ НАРУШЕННЫХ ЗЕМЕЛЬ 1992
  • Месяц С.П.
  • Калацкая М.Н.
  • Кириллова Л.А.
  • Сентябрева И.А.
RU2030851C1
Способ рекультивации отвальных пород 1977
  • Хорошавин Анатолий Николаевич
  • Катаева Ирина Валериановна
  • Оборин Геннадий Александрович
SU1001881A1
СПОСОБ РЕКУЛЬТИВАЦИИ БОЛОТНЫХ ЗЕМЕЛЬ 2010
  • Панков Дмитрий Михайлович
RU2437263C1

Реферат патента 2019 года Способ биологической рекультивации техногенного ландшафта тепловой электроцентрали с использованием микроводоросли хлорелла

Изобретение относится к области, рекультивации нарушенных земель, защите окружающей среды, в частности, от пыления золоотвалов тепловых электростанций. Способ биологической рекультивации техногенного ландшафта тепловой электроцентрали включает предварительное изучение естественной растительности техногенного ландшафта, исследование агрохимического состава субстрата. По их результатам высевают соответствующие многолетние злаковые травы с мощной корневой системой и бобовые травы, а также вносят удобрение в виде водного раствора микроводоросли хлорелла (Chlorella vulgaris) в дозе 5 л/га. Осуществляют предотвращение пыления золоотвала, закрепление субстрата. 2 пр.

Формула изобретения RU 2 677 983 C1

Способ биологической рекультивации техногенного ландшафта тепловой электроцентрали, характеризующийся тем, что предварительно проводят изучение естественной растительности техногенного ландшафта, исследование агрохимического состава субстрата, а затем высевают многолетние злаковые травы с мощной корневой системой и бобовые травы и вносят удобрение в виде водного раствора микроводоросли хлорелла (Chlorella vulgaris) в дозе 5 л/га.

Документы, цитированные в отчете о поиске Патент 2019 года RU2677983C1

Способ рекультивации нарушенных земель 2016
  • Листов Евгений Леонидович
  • Пыстина Наталья Борисовна
  • Хохлачев Николай Сергеевич
  • Никишова Анна Сергеевна
  • Лужков Виктор Александрович
  • Ишков Александр Гаврилович
RU2630237C1
СПОСОБ БИОЛОГИЧЕСКОЙ РЕКУЛЬТИВАЦИИ ТЕХНОГЕННО-НАРУШЕННЫХ ЗЕМЕЛЬ 2010
  • Иванова Любовь Андреевна
  • Котельников Владимир Александрович
RU2512171C2
US 4317670 A1, 02.03.1982.

RU 2 677 983 C1

Авторы

Панова Екатерина Николаевна

Стифеев Анатолий Иванович

Даты

2019-01-22Публикация

2018-01-10Подача