Способ получения нанокапсул диакамфа в гуаровой камеди Российский патент 2019 года по МПК A61K9/51 B82B1/00 A61K31/4184 

Описание патента на изобретение RU2678971C1

Изобретение относится к области нанотехнологии, фармакологии, фармацевтике и медицине.

Ранее были известны способы получения микрокапсул. Так, в пат. 2092155 МПК A61K 047/02, A61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10 Российская Федерация опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°С, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2159037 МПК A01N 25/28, A01N 25/30 Российская Федерация опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 Описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что, в свою очередь, приводит к уменьшению выхода конечных капсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12 опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.

Недостатком предложенного способа является сложность процесса, а отсюда низкий выход конечного продукта.

В пат. WO/2011/003805 ЕР МПК B01J 13/18; B65D 83/14; C08G 18/00 опубликован 13.01.2011 описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промыш

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул водораствормых диакамфа в гуаровой камеди, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул диакамфа, характеризующимся тем, что в качестве оболочки нанокапсул используется гуаровая камедь, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - петролейного эфира, процесс получения осуществляется без специального оборудования.

Результатом предлагаемого метода является получение нанокапсул диакамфа в гуаровой камеди. Выход нанокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул диакамфа в соотношение ядро : облолочка 1:3

К 3,0 г гуаровой камеди в бутаноле добавляют 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1,0 г порошка диакамфа небольшими порциями добавляют в суспензию гуаровой камеди в бутаноле. После образования самостоятельной твердой фазы медленно добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре и сушат.

Получено 3 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул диакамфа в соотношение ядро : облолочка 1:1

К 1,0 г гуаровой камеди в бутаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1,0 г порошка диакамфа небольшими порциями добавляют в суспензию гуаровой камеди в бутаноле. После образования самостоятельной твердой фазы медленно добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул диакамфа в соотношении ядро : оболочка 1:2

К 2,0 г гуаровой камеди в бутаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1,0 г порошка диакамфа небольшими порциями добавляют к суспензии гуаровой камеди в бутаноле. После образования самостоятельной твердой фазы медленно добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г белого порошка. Выход составил 100%.

Похожие патенты RU2678971C1

название год авторы номер документа
Способ получения нанокапсул диакамфа 2020
  • Кролевец Александр Александрович
RU2734238C1
Способ получения нанокапсул диакамфа в альгинате натрия 2018
  • Кролевец Александр Александрович
RU2677242C1
Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди 2015
  • Кролевец Александр Александрович
RU2627580C2
Способ получения нанокапсул доксициклина в гуаровой камеди 2018
  • Кролевец Александр Александрович
RU2694776C1
Способ получения нанокапсул стрептоцида в ксантановой камеди 2017
  • Кролевец Александр Александрович
RU2665411C1
Способ получения нанокапсул хлорамфеникола (левомицетина) 2020
  • Кролевец Александр Александрович
RU2736053C1
Способ получения нанокапсул сухого экстракта топинамбура 2016
  • Кролевец Александр Александрович
RU2640130C2
Способ получения нанокапсул метронидазола в гуаровой камеди 2018
  • Кролевец Александр Александрович
RU2669353C1
Способ получения нанокапсул хлорамфеникола (левомицетина) 2020
  • Кролевец Александр Александрович
RU2736049C1
Способ получения нанокапсул ципрофлоксацина гидрохлорида 2015
  • Кролевец Александр Александрович
RU2609742C1

Реферат патента 2019 года Способ получения нанокапсул диакамфа в гуаровой камеди

Изобретение относится к области нанотехнологии, медицины, фармакологии. Способ получения нанокапсул диакамфа в гуаровой камеди характеризуется тем, что в качестве оболочки нанокапсул используется гуаровая камедь, при этом диакамф порциями добавляют в суспензию гуаровой камеди в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф:гуаровая камедь 1:1, или 1:3, или 1:2 смесь перемешивают, затем добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают и сушат. 3 пр.

Формула изобретения RU 2 678 971 C1

Способ получения нанокапсул диакамфа в гуаровой камеди, характеризующийся тем, что в качестве оболочки нанокапсул используется гуаровая камедь, при этом диакамф порциями добавляют в суспензию гуаровой камеди в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф:гуаровая камедь 1:1, или 1:3, или 1:2 смесь перемешивают, затем добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают и сушат.

Документы, цитированные в отчете о поиске Патент 2019 года RU2678971C1

Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Медведева Яна Владимировна
RU2619331C2
Солодовник В.Д
Микрокапсулирование, 1980, стр.136-137
Nagavarma B.V.N
Different techniques for preparation of polymeric nanoparticles / Asian Journal Pharm Clin Res, 2012, vol.5, suppl 3, pages 16-23.

RU 2 678 971 C1

Авторы

Кролевец Александр Александрович

Даты

2019-02-05Публикация

2018-03-19Подача