Изобретение относится к области разделения и концентрирования различных растворов методами микро и ультрафильтрации и может быть использовано в пищевой, фармацевтической, микробиологической промышленности, а также на предприятиях агропромышленного комплекса.
Наиболее близким по технической сущности и достигаемому эффекту к решаемой задаче является мембранный аппарат с нестационарной гидродинамикой [Патент РФ № 2174432, МПК 7 B01D63/06 Мембранный аппарат с нестационарной гидродинамикой / Кретов И.Т., Шахов С.В., Ключников А.И., Ряжских В.И., заявитель и патентообладатель Государственное образовательное учреждение высшего профессионального образования " Воронежская государственная технологическая академия", заявл. 04.12.2000, опубл: 10.10.2001, Бюл № 20], состоящим из трубчатых мембранных модулей, патрубков для ввода исходного раствора, вывода фильтрата и концентрата, полупроницаемого рукава, расположенного коаксиально мембранной поверхности, элементов, соединенных между собой звеньями цепи.
Технической задачей изобретения является повышение производительности мембранного аппарата за счет улучшения гидродинамических воздействия на разделяемый поток вследствие снижения уровня концентрационной поляризации на трубчатых керамических мембранных модулях и его удаления из рабочего объема мембранного аппарата.
Техническая задача достигается тем, что в мембранном аппарате с надувными рукавами, включающем корпус, трубчатые керамические мембранные модули, патрубки для ввода исходного раствора, вывода фильтрата и концентрата, двухходовые воздушные клапаны, рукава, новым является то, что рукава присоединены через двухходовые воздушные клапаны к системе сжатого воздуха и выполнены с возможностью увеличения размеров путем их надува, при этом рукава соединены равноудаленно между собой посредством перемычек через жесткие непроницаемые перегородки, которые делят пространство между трубчатыми керамическими мембранными модулями на секции.
Технической задачей изобретения является повышение производительности мембранного аппарата за счет улучшения гидродинамических воздействия на разделяемый поток вследствие снижения уровня концентрационной поляризации на трубчатых керамических мембранных модулях и его удаления из рабочего объема мембранного аппарата.
Технический результат заключается в повышении производительности мембранного аппарата за счет улучшения гидродинамического воздействия на разделяемый поток вследствие удаления слоя высокой концентрации, образующегося на трубчатых керамических мембранных модулях и его удаления из рабочего объема мембранного аппарата.
На фиг. 1 схематически изображен разрез предлагаемого мембранного аппарата; на фиг. 2 - сечение мембранного аппарата; на фиг. 3 и фиг. 4 - схема гидродинамического процесса в момент присутствия и отсутствия сжатого воздуха в рукавах.
Мембранный аппарат (Фиг. 1,2) содержит корпус 1, стянутый шпильками 2, с находящимися внутри трубчатыми керамическими мембранными модулями 3, который снабжен патрубком ввода исходного раствора 4, патрубками вывода фильтрата 5 и концентрата 6 соответственно. Распределительное устройство 7, обеспечивает равномерное распределение исходного раствора по трубчатым керамическим мембранным модулям. Для создания гидродинамического воздействия внутри трубчатых керамических мембранных модулей 3, размещены рукава 9, которые изменяют свой объем при помощи двухходовых воздушных клапанов 10.
Мембранный аппарат работает следующим образом.
Исходный раствор подается через патрубок 4 и распределительное устройство 7 в трубчатые керамические мембранные модули 3.
Сначала рукава 9 не наполнены воздухом (Фиг. 4). Исходный раствор движется вдоль поверхности трубчатых керамических мембранных модулей 3, разделяется или концентрируется в зависимости от задачи. Полученный в процессе разделения пермеат отводится по каналам с помощью патрубка 5 , а концентрат через патрубок 6.
После того, как проницаемость керамических мембран снизится, срабатывают двухходовые воздушные клапаны 10, наполняя рукава 9 сжатым воздухом (Фиг. 3). Происходит резкое увеличение рабочего давления
Оставшийся на трубчатых керамических мембранных модулях 3 слой осадка высокомолекулярных соединений уплотняется (Фиг. 3,под Б) за счет увеличения рабочего давления
В следующей стадии работы мембранного аппарата происходит срабатывание двухходовых воздушных клапанов 10 и удаление сжатого воздуха из рукавов 9 (Фиг. 4). Это приводит к резкому уменьшению давления. В результате насосного эффекта происходит замкнутая, в течении короткого промежутка времени, циркуляция исходного раствора внутри рабочего объема мембранного аппарата, благодаря которой возникает турбулизация потока и снижение концентрационной поляризации. В этот же момент времени возникает разность величин давления в пространстве между трубчатыми керамическими мембранными модулями 3
Далее процессы повторяются аналогично, описанным выше.
Данный аппарат позволяет обеспечить:
- низкий уровень концентрационной поляризации вследствие применения рукавов, присоединенных через двухходовые воздушные клапаны к системе сжатого воздуха и выполнены с возможностью увеличения размеров путем их надува, при этом рукава соединены равноудалено между собой посредством перемычек через жесткие непроницаемые перегородки, которые делят пространство между трубчатыми керамическими мембранными модулями на секции.
- получение широкого диапазона производительности за счет изменения гидродинамических условий в аппарате, связанных с частотой изменения объема надувных рукавов, скорости подачи и выпуска сжатого воздуха.
название | год | авторы | номер документа |
---|---|---|---|
МЕМБРАННЫЙ АППАРАТ С НЕСТАЦИОНАРНОЙ ГИДРОДИНАМИКОЙ | 2000 |
|
RU2174432C1 |
МЕМБРАННЫЙ АППАРАТ С СОПЛОВЫМ ТУРБУЛИЗАТОРОМ | 2023 |
|
RU2813339C1 |
Мембранный аппарат с турбулизатором двойного действия | 2018 |
|
RU2680459C1 |
МЕМБРАННЫЙ АППАРАТ | 2014 |
|
RU2560417C1 |
УСТАНОВКА ДЛЯ МЕМБРАННОГО ФИЛЬТРОВАНИЯ ГАЗОНАСЫЩЕННЫХ ЖИДКИХ ПРОДУКТОВ | 2007 |
|
RU2329860C1 |
МЕМБРАННЫЙ АППАРАТ С ИМПУЛЬСНЫМ РЕЖИМОМ ФИЛЬТРАЦИИ | 2003 |
|
RU2238794C1 |
МЕМБРАННЫЙ АППАРАТ С ТОРОИДАЛЬНЫМИ ТУРБУЛИЗАТОРАМИ | 2004 |
|
RU2269373C1 |
МЕМБРАННЫЙ АППАРАТ С НЕУСТАНОВИВШЕЙСЯ ГИДРОДИНАМИКОЙ | 2012 |
|
RU2506990C1 |
МЕМБРАННЫЙ АППАРАТ С ПЕРЕМЕННЫМ СЕЧЕНИЕМ ПОТОКА | 2005 |
|
RU2280496C1 |
УСТАНОВКА ДЛЯ ОЧИСТКИ ВОДЫ | 2000 |
|
RU2155165C1 |
Изобретение относится к области разделения и концентрирования различных растворов методами микро- и ультрафильтрации и может быть использовано в пищевой, фармацевтической, микробиологической промышленности. Мембранный аппарат с надувными рукавами включает корпус, трубчатые керамические мембранные модули, патрубки для ввода исходного раствора, вывода фильтрата и концентрата, двухходовые воздушные клапаны, рукава, при этом рукава присоединены через двухходовые воздушные клапаны к системе сжатого воздуха и выполнены с возможностью увеличения размеров путем их надува, при этом рукава соединены равноудаленно между собой посредством перемычек через жесткие непроницаемые перегородки, которые делят пространство между трубчатыми керамическими мембранными модулями на секции. Техническим результатом изобретения является повышение производительности мембранного аппарата. 4 ил.
Мембранный аппарат с надувными рукавами, включающий корпус, трубчатые керамические мембранные модули, патрубки для ввода исходного раствора, вывода фильтрата и концентрата, двухходовые воздушные клапаны, рукава, отличающийся тем, что рукава присоединены через двухходовые воздушные клапаны к системе сжатого воздуха и выполнены с возможностью увеличения размеров путем их надува, при этом рукава соединены равноудаленно между собой посредством перемычек через жесткие непроницаемые перегородки, которые делят пространство между трубчатыми керамическими мембранными модулями на секции.
МЕМБРАННЫЙ АППАРАТ С НЕСТАЦИОНАРНОЙ ГИДРОДИНАМИКОЙ | 2000 |
|
RU2174432C1 |
Мембранный элемент | 1986 |
|
SU1367995A1 |
МЕМБРАННЫЙ ЭЛЕМЕНТ ДЛЯ РАЗДЕЛЕНИЯ ЖИДКИХ СРЕД МЕТОДОМ УЛЬТРАФИЛЬТРАЦИИ | 1991 |
|
RU2050177C1 |
RU 2052280 С1, 20.01.1996 | |||
МЕМБРАННЫЙ АППАРАТ С ТОРОИДАЛЬНЫМИ ТУРБУЛИЗАТОРАМИ | 2004 |
|
RU2269373C1 |
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания | 1917 |
|
SU96A1 |
Авторы
Даты
2019-02-14—Публикация
2018-03-29—Подача