СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ЗАСОРЕНИЯ СТУПЕНЕЙ ПОГРУЖНЫХ ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСОВ Российский патент 2019 года по МПК E21B37/00 

Описание патента на изобретение RU2681054C1

Изобретение относится к нефтедобывающей промышленности, а именно к конструкции стендов для моделирования процесса отложения солей и механических частиц на деталях погружных электроцентробежных насосов (ЭЦН) и может быть использовано для проведения сравнительных испытаний ЭЦН, предназначенных для работы в скважинах, осложненных высоким содержанием неорганических солей в пластовой жидкости.

Известен стенд для моделирования солеотложения на деталях скважинного оборудования [Патент №2286440 RU, Е21В 37/06, 27.10.2006], состоящий из узла подвода углекислого газа, емкости для приготовления смеси, узла подвода смеси, устройства сброса давления. Методика испытаний на данном стенде включает подачу модельной жидкости через узел подвода смеси и устройство сброса давления на поверхность образца, нагретую до температуры, близкой к скважинным условиям, на которой происходит выделение кристаллов соли с последующей оценкой кинетики солеотложения по приросту массы образца в единицу времени.

Также известен стенд для исследования процесса солеотложения на ступенях ЭЦН [Латыпов О.Р. Научные основы предупреждения осложнений в процессах извлечения и подготовки нефти путем модифицирования технологических жидкостей и агрегаты для его осуществления: дис. канд. техн. наук. - М., 2016. С. 84], содержащий электроцентробежный насоса, который заполняют модельной смесью скважинной жидкости. Насос работает на закрытую задвижку. В процессе работы насоса происходит нагрев модельной жидкости, вследствие чего раствор становится пересыщенным и выделяются кристаллы кальцита.

Данные стенды не моделирует процесс засорения ЭЦН, который заключается в образовании в проточных каналах ЭЦН механической смеси твердых частиц, скрепленных солями. Место образования отложений определяется полями скоростей в проточных каналах, которые также не моделируется в описанном выше стенде. Кроме того, не учитывается влияние твердых частиц, практически всегда присутствующих в добываемой жидкости, на кинетику солеотложения.

В качестве прототипа выбран стенд для исследования солеотложения на ступенях ЭЦН [Многофункциональный стендовый комплекс по исследованию инновационного оборудования для добычи нефти и повышения нефтеотдачи пластов с применением установок погружных насосов // Бурение & Нефть. 2014, №2. С. 50-54], состоящий из узла подвода углекислого газа, емкости, электродвигателя, газосепаратора и насоса. Согласно методике испытаний углекислый газ из баллона подается в емкость, содержащую смесь кальцита и воды, где в ходе химической реакции образуется раствор гидрокарбоната кальция, полученная газожидкостная смесь из емкости по подводящим трубам, в которых сбрасывается давление, подается в газосепаратор, откуда после отделения углекислого газа жидкость подается в испытуемый насос. Поступающая в насос жидкость имеет пониженную концентрацию углекислого газа в растворе, что снижает растворимость кальцита, и он выделяется в виде кристаллов.

Снижение давления до поступления жидкости в ЭЦН также приводит к выделению кристаллов кальцита в подводящем трубопроводе и газосепараторе. Этот стенд не обеспечивает объективного моделирования процесса засорения ступеней ЭЦН, происходящего в скважине, который, в свою очередь, существенно зависит от наличия в жидкости твердых частиц, являющихся центрами кристаллизации солей.

Задачей настоящего изобретения является разработка стенда, обеспечивающего возможность изучения процесса засорения ступеней ЭЦН в условиях, максимально приближенных к реальным условиям работы в скважине, за счет получения высококонцентрированного пересыщенного раствора кальцита, присутствия механических примесей и исключения падения давления до поступления его в ЭЦН.

Указанный технический результат достигается тем, что в стенде моделирования засорения ступеней ЭЦН, содержащим узел подвода углекислого газа, емкость, электродвигатель и многоступенчатый электроцентробежный насос, согласно изобретению, емкость снабжена устройством перемешивания, а в корпусе электроцентробежного насоса на входе перед ступенями размещена мембрана.

Размещение мембраны перед ступенями позволяет сбросить давление непосредственно в самом электроцентробежном насосе. Тем самым обеспечиваются минимальные потери кальцита в системе.

Установка устройства перемешивания в емкости для приготовления смеси повышает интенсивность растворения углекислого газа. В качестве устройства перемешивания может быть использована ленточная мешалка одиночная или в сочетании с насосом, установленным с возможностью откачки смеси из нижней части емкости с последующим ее распылением через форсунку в верхней части.

В некоторых вариантах исполнения в качестве устройства перемешивания может быть использована система, включающая лопастную мешалку, центробежный насос, обеспечивающий откачку смеси из нижней части, и струйный насос, установленный в верхней части емкости.

Кроме того, в качестве устройства перемешивания может быть использована система из вертикальной и горизонтальной мешалок, в которой горизонтальная мешалка подключена к вертикальному валу с помощью зубчатой конической или червячной передачи.

Кроме того, в качестве устройства перемешивания может быть использована наклонная мешалка.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлен общий вид заявляемого стенда; на фиг. 2-6 - варианты выполнения устройства перемешивания; на фиг. 7 - конструкция наклонной мешалки.

Стенд для моделирования засорения ступеней ЭЦН (фиг. 1) состоит из двух блоков: блока для приготовления смеси, имитирующей скважинную жидкость, и блока испытания ЭЦН. Блок приготовления смеси содержит емкость 1, баллон с углекислым газом 2, имеющий подводящий газовый трубопровод 3 с соплом 4, и ленточную мешалку 5, установленную на валу электродвигателя 6. На баллоне с углекислым газом 2 установлен расходомер 7.

Емкость 1 имеет цилиндрический корпус со сферическим дном. На крышке емкости 1 расположены манометр 8 для контроля давления, входы для вала электродвигателя 6 и газового трубопровода 3. Ленточная мешалка 5 представляет собой шнек, выполненный из металлических лент, расположенных на валу электродвигателя 6, и устанавливается таким образом, чтобы ее верх находился выше уровня жидкости 9. Газовый трубопровод 3 расположен вдоль цилиндрической стенки емкости 1 и заканчивается соплом 4. В средней части корпуса расположена Г-образная трубка 10 для отвода готовой смеси к испытуемому насосу 11.

Блок испытания включает последовательно установленные электродвигатель 12, испытуемый ЭЦН 11, дроссель 13 и холодильник 14 для охлаждения отработанной жидкости, который соединен с верхней частью емкости 1. В корпусе ЭЦН 11 перед первой ступенью размещена мембрана 15, по обе стороны от которой установлены манометры 16 для контроля давления. Емкость 1 через Г-образную трубку 10 и дроссель 17 подключена к входу ЭЦН 11, при этом на выходе из емкости 1 установлен пробоотбор 18 для контроля качества подготовленной смеси.

Ленточная мешалка 5 является одним из вариантов реализации устройства перемешивания. Кроме ленточной мешалки, возможно применение устройства перемешивания, содержащего лопастную мешалку 19, обеспечивающую поддержку во взвешенном состоянии частичек кальцита в объеме жидкости (см. фиг. 2) и насос 20, который посредством трубопроводов на входе соединен с нижней частью емкости 1, а на выходе - с форсункой 21, установленной в верхней части емкости 1. Насос 20 откачивает жидкость из нижней части емкости 1 и с помощью форсунки 21 распыляет ее в газовой шапке, образующейся выше уровня жидкости 9, обеспечивая тем самым растворение углекислого газа в жидкости. Вместо форсунки 21 может быть установлен струйный насос 22 (фиг. 3), в котором будет происходить насыщение откачанной насосом 20 жидкости газообразным углекислым газом, а полученная в результате смесь будет нагнетаться в среднюю часть емкости 1.

На фиг. 4 изображена система из вертикальной 23 и горизонтальной 24 мешалок, соединенных между собой зубчатой конической передачей 25. Вертикальная мешалка 23 предназначена для поддержания частичек кальцита во взвешенном состоянии, а горизонтальная мешалка 24, которая устанавливается на границе раздела фаз, обеспечивает разбрызгивание жидкости в объем газовой шапки.

Для такой системы в качестве альтернативного варианта может применяться червячный тип передачи вращения, когда на основной вал 26 устанавливается зубчатое колесо 27, которое передает вращение на цилиндрический червяк 28, тем самым обеспечивая вращение горизонтальной мешалки 24 (фиг. 5).

На фиг. 6 показан вариант размещения в емкости 1 устройства перемешивания в виде одной наклонной мешалки 29, возможная конструкция которой изображена на фиг. 7, Верхняя часть мешалки 29 находится выше границы раздела жидкой и газообразной фазы 9 и обеспечивает аэрацию жидкости в газовой шапке, а нижняя часть мешалки 29 способствует активному перемешиванию твердой и жидкой фаз.

Стенд работает следующим образом.

Емкость 1, через снятую крышку, заполняется смесью воды, измельченного кальцита и механических примесей. Углекислый газ из баллона 2 через газовый трубопровод 3, заканчивающийся соплом 4, под давлением закачивается в емкость 1. Включается электродвигатель 6, вращающий мешалку 5. Мешалка 5 обеспечивает поток жидкости вниз для перемешивания воды и измельченного кальцита, а за счет ударения ленты о границу раздела фаз создает поток пузырей газа, состоящих из диоксида углерода, в объем емкости 7, тем самым увеличивая скорость растворения газа в жидкости. Время растворения выбирается исходя из оценочных расчетов. После приготовления раствора, моделирующего скважинную жидкость, открываются дроссели 17 и 13, включается электродвигатель 12 с приводом к испытуемому насосу 11. Приготовленная модельная жидкость поступает в ЭЦН. При прохождении через мембрану 15 в жидкости снижается давление, вследствие чего выделяется углекислый газ и выпадают кристаллы кальцита как на стенках ступеней, так и в объеме жидкости. Выпадение кальцита будет происходить только на первых ступенях насоса, на которых давление жидкости будет ниже давления в емкости 1. На остальных ступенях, где давление сравняется с давлением в емкости 1 или же превысит его, пойдет обратный процесс растворения газа и кристаллов кальцита. Оценку концентрации кальцита в растворе, перед запуском ее в ЭЦН 11, проводят с помощью системы пробоотбора 18. Избыток тепла в жидкости, выходящей из ЭЦН 11, снимается в холодильнике 14, откуда охлажденная, отработанная жидкость возвращается в емкость 1. Давление в емкости 1, измеряемое манометром 8, поддерживается постоянным с помощью регулирования подачи углекислого газа из баллона 2. Контроль давления в ЭЦН 11 до и после мембраны 15 осуществляется с помощью манометров 16. Для количественной оценки солеотложения ступени взвешивают до и после испытания.

Похожие патенты RU2681054C1

название год авторы номер документа
СТЕНД ДЛЯ ИСПЫТАНИЯ СТРУЙНЫХ НАСОСОВ 2015
  • Сироткин Виталий Игоревич
  • Пещеренко Сергей Николаевич
  • Пещеренко Марина Петровна
RU2587508C1
СПОСОБ ИСПЫТАНИЯ ГАЗОСЕПАРАТОРОВ НА ГАЗОЖИДКОСТНЫХ СМЕСЯХ И СТЕНД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Островский Виктор Георгиевич
  • Перельман Максим Олегович
  • Пещеренко Сергей Николаевич
RU2531090C1
СПОСОБ ДОБЫЧИ НЕФТИ ГАРИПОВА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Гарипов Олег Марсович
  • Багров Олег Викторович
  • Мустафин Эдвин Ленарович
  • Гарипов Максим Олегович
RU2405918C1
Способ испытания газосепараторов на газожидкостных смесях и стенд для его осуществления 2017
  • Трулев Алексей Владимирович
  • Леонов Вячеслав Владимирович
RU2647175C1
УСТРОЙСТВО ДЛЯ СЕПАРАЦИИ ТВЕРДЫХ ЧАСТИЦ И ГАЗА ПОГРУЖНОГО ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА 2007
  • Нужных Валерий Викторович
  • Газаров Аленик Григорьевич
  • Ельцов Игорь Дмитриевич
  • Буранчин Азамат Равильевич
RU2354821C1
СТЕНД ГИДРАВЛИЧЕСКИХ ИСПЫТАНИЙ ГАЗОСЕПАРАТОРОВ НАСОСНЫХ УСТАНОВОК ДЛЯ ПОДАЧИ ПЛАСТОВОЙ ЖИДКОСТИ 2009
  • Калан Валерий Александрович
  • Петров Владимир Иванович
  • Исаев Григорий Анатольевич
  • Трулев Алексей Владимирович
RU2425254C2
СПОСОБ СЕПАРАЦИИ ГАЗА ПОГРУЖНОГО ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА С ПОГРУЖНЫМ ЭЛЕКТРОДВИГАТЕЛЕМ В КОЖУХЕ 2018
  • Малыхин Игорь Александрович
RU2691221C1
ПОГРУЖНОЙ ЦЕНТРОБЕЖНЫЙ ВЫСОКОНАПОРНЫЙ ЭЛЕКТРОНАСОС ДЛЯ ПОДЪЕМА ЖИДКОСТИ ИЗ СКВАЖИН 2001
  • Снисаренко Г.Н.
RU2205986C2
СПОСОБ СЕПАРАЦИИ ГАЗА, СОВМЕЩЕННЫЙ С ОХЛАЖДЕНИЕМ ПОГРУЖНОГО ЭЛЕКТРОДВИГАТЕЛЯ 2020
  • Малыхин Игорь Александрович
RU2732319C1
СЕПАРАТОР ДЛЯ ПОГРУЖНЫХ ЦЕНТРОБЕЖНЫХ НАСОСОВ В СКВАЖИНАХ 2004
  • Амельченко Леонид Владимирович
RU2278255C2

Иллюстрации к изобретению RU 2 681 054 C1

Реферат патента 2019 года СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ЗАСОРЕНИЯ СТУПЕНЕЙ ПОГРУЖНЫХ ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСОВ

Изобретение относится к нефтедобывающей промышленности, а именно к конструкции стендов для моделирования процесса отложения солей и механических частиц на деталях погружных электроцентробежных насосов (ЭЦН) и может быть использовано для проведения сравнительных испытаний ЭЦН, предназначенных для работы в скважинах, осложненных высоким содержанием неорганических солей в пластовой жидкости Устройство содержит узел подвода углекислого газа, емкость для приготовления смеси, имитирующей скважинную жидкость, содержащую механические примеси, электродвигатель и многоступенчатый электроцентробежный насос. Емкость для приготовления смеси снабжена устройством перемешивания, имеющим мешалку, установленную на валу электродвигателя, узел подвода углекислого газа включает газопровод, расположенный вдоль стенки емкости. В корпусе электроцентробежного насоса на входе перед ступенями размещена мембрана, при этом насос связан с емкостью Г-образной трубкой. Обеспечивается возможность изучения процесса засорения ступеней ЭЦН в условиях, максимально приближенных к реальным условиям работы в скважине, повышается степень объективности моделирования процесса. 5 з.п. ф-лы, 7 ил.

Формула изобретения RU 2 681 054 C1

1. Стенд для моделирования засорения ступеней погружных электроцентробежных насосов, содержащий узел подвода углекислого газа, емкость для приготовления смеси, имитирующей скважинную жидкость, содержащую механические примеси, электродвигатель и многоступенчатый электроцентробежный насос, отличающийся тем, что емкость для приготовления смеси снабжена устройством перемешивания, имеющим мешалку, установленную на валу электродвигателя, узел подвода углекислого газа включает газопровод, расположенный вдоль стенки емкости, а в корпусе электроцентробежного насоса на входе перед ступенями размещена мембрана, при этом электроцентробежный насос связан с емкостью Г-образной трубкой.

2. Стенд для моделирования по п. 1, отличающийся тем, что в качестве устройства перемешивания использована ленточная мешалка.

3. Стенд для моделирования по п. 1, отличающийся тем, что устройство перемешивания образовано лопастной мешалкой и насосом, установленным с возможностью откачки смеси из нижней части емкости с последующим ее распылением через форсунку в верхней части.

4. Стенд для моделирования по п. 1, отличающийся тем, что в качестве устройства перемешивания использована система, включающая лопастную мешалку, центробежный насос, обеспечивающий откачку смеси из нижней части, и струйный насос, установленный в верхней части емкости.

5. Стенд для моделирования по п. 1, отличающийся тем, что в качестве устройства перемешивания использована система из вертикальной и горизонтальной мешалок, в которой горизонтальная мешалка подключена к вертикальному валу электродвигателя с помощью зубчатой конической или червячной передачи.

6. Стенд для моделирования по п. 1, отличающийся тем, что в качестве устройства перемешивания использована наклонная мешалка.

Документы, цитированные в отчете о поиске Патент 2019 года RU2681054C1

Многофункциональный стендовый комплекс по исследованию инновационного оборудования для добычи нефти и повышения нефтеотдачи пластов с применением установок погружных насосов", журнал "Бурение и нефть", 2014 N2, с
Устройство для выпрямления многофазного тока 1923
  • Ларионов А.Н.
SU50A1
Стенд для моделирования процесса солеотложения в газовых скважинах 1986
  • Межидов Вахид Хумаидович
  • Гужов Александр Иванович
  • Ибрагимов Ризван Нажмудинович
SU1355693A2
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА СОЛЕОТЛОЖЕНИЯ НА ДЕТАЛЯХ СКВАЖИННОГО ОБОРУДОВАНИЯ 2004
  • Глускин Яков Абрамович
RU2286440C2
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА СОЛЕОТЛОЖЕНИЯ В ГАЗОВЫХ СКВАЖИНАХ 1991
  • Сапаров И.А.
  • Оразклычев К.
RU2011799C1
СМЕСИТЕЛЬ 1992
  • Слепцов В.К.
  • Давыдков В.И.
RU2031700C1
JP 5767632 A1, 19.08.2015.

RU 2 681 054 C1

Авторы

Павлов Данил Андреевич

Пещеренко Сергей Николаевич

Даты

2019-03-01Публикация

2018-02-26Подача