СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ТИТАНОВЫХ СПЛАВОВ Российский патент 2019 года по МПК C23C14/48 C23C14/02 

Описание патента на изобретение RU2682743C1

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для упрочняющей обработки пера рабочих лопаток компрессора ГТД из титановых сплавов для повышения выносливости и циклической долговечности деталей.

Известен способ восстановления рабочей поверхности лопатки турбины теплового двигателя, включающий удаление отработанного слоя потоком ионов плазмы тугоплавких материалов и нанесение жаростойкого покрытия с последующей термообработкой (А.С. СССР №1832132, МПК С23С 14/02, 1993).

Однако известный способ очистки поверхности (А.С. СССР №1832132, МПК С23С 14/02, 1993) потоком ионов плазмы инертного газа не предусматривает последующее ионно-имплантационное модифицирование, что не позволяет обеспечить комплекс необходимых повышенных эксплуатационных характеристик (выносливости, длительной прочности) деталей из сплавов на основе титана.

Известен также способ модификации поверхности деталей, включающий ионную очистку поверхности пучком ионов азота, ионную имплантацию и стабилизирующий отжиг (Патент РФ №20007501, МПК С23С 14/48, 1994).

Основным недостатком этого способа являются невысокие эксплуатационные характеристики деталей из титановых сплавов.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ ионно-имплантационной обработки деталей из титановых сплавов, включающий ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота (Патент РФ №21 16378, МПК С23С 14/48, Способ модификации поверхностных слоев деталей из сплавов на основе титана. 1998 г.).

При этом ионную очистку осуществляют ионами инертных газов аргона или ксенона с энергией 250-350 кВ, плотностью ионного тока 3-10 мА/см2, в течение времени более 3000 с, ионное легирование азотом проводят с энергией 30-50 мкА/см2, в течение 500-2500 с, а отжиг проводят при температуре 450-550°C и давлении остаточных газов 10-3-5⋅10-3 Па в течение 2-2,5 ч.

Основным недостатком аналога способа являются невысокие эксплуатационные характеристики деталей из сплавов на основе титана (предела выносливости, циклической долговечности). Это связано с недостаточно рациональными вариантами обработки поверхности деталей из титановых сплавов при использовании методов ионно-имплантационного воздействия. При этом повышение указанных характеристик особенно важно для таких деталей из титановых сплавов, как компрессорные лопатки газотурбинных двигателей (ГТД).

Задачей настоящего изобретения является создание такого поверхностного слоя материала детали, который позволил бы обеспечить повышенные эксплуатационные характеристики деталей из сплавов на основе титана (предела выносливости, циклической долговечности).

Техническим результатом заявляемого способа является повышение эксплуатационных характеристик (предела выносливости, циклической долговечности) деталей из титановых сплавов за счет обеспечения интенсификации ионно-имплантационной обработки поверхности деталей.

Технический результат достигается за счет того, что в способе ионно-имплантационной обработки лопаток компрессора из титановых сплавов, включающий размещение лопаток на держателе внутри рабочей камеры вакуумной установки с протяженным генератором газовой плазмы, вращение лопаток на держателе вокруг их собственной оси при одновременном перемещении их относительно имплантора путем вращения держателя вокруг его собственной оси и ионно-имплантационную обработку поверхности лопатки ионами азота, причем лопатки перемещают через зону имплантации циклически до окончания полной обработки лопаток с последующим охлаждением лопаток вместе с рабочей камерой установки до нормальной температуры, отличающийся тем, что ионно-имплантационную обработку поверхности лопатки осуществляют при энергии от 20 до 35 кэВ и дозой от 1,6⋅1017 см-2 до 2,3⋅1017 см-2, при этом за каждый цикл перемещения лопатки через зону имплантации ее поворачивают вокруг собственной оси на угол от 220 до 280 градусов, причем каждое последующее размещение упомянутой лопатки в зоне имплантации осуществляют со сдвигом фазы ее вращения вокруг собственной оси на 10-20 градусов от угла ее предыдущего вхождения в зону имплантации.

Для оценки эксплуатационных свойств лопаток паровых и газовых турбин были проведены следующие испытания. Образцы из титановых сплавов ВТ6, ВТ 18-У и ВТ9 были подвергнуты ионно-имплантационной обработке как по способу-прототипу (патент РФ №2116378, МПК С23С 14/48, 1998 г.), согласно приведенным в способе-прототипе условиям и режимам обработки, так и по предлагаемому способу.

Режимы обработки образцов по предлагаемому способу.

Ионная имплантация ионами азота: энергия - 16 кэВ (Н.Р.); 20 кэВ (У.Р.); 35 кэВ (У.Р.); 40 кэВ (Н.Р.); доза - 1,4⋅1017 см-2 (Н.Р.); 1,6⋅1017 см-2 (У.Р.); 1,8⋅1017 см-2 (У.Р.); 2,3⋅1017 см-2 (У.Р.); 2,6⋅1017 см-2 (Н.Р.).

Поворот лопатки вокруг собственной оси за каждый цикл ее прохождения через зону имплантации на угол: 200 градусов (Н.Р.); 220 градусов (У.Р.); 240 градусов (У.Р.); 280 градусов (У.Р.); 300 градусов (Н.Р.).

Изменение угла каждого последующего вхождения лопатки в зону имплантации (сдвиг фазы ее вращения вокруг собственной оси): на 5 градусов (Н.Р.); на 10 градусов (У.Р.); на 15 градусов (У.Р.); на 20 градусов (У.Р.); на 25 градусов (Н.Р.).

Ионную имплантацию проводили в непрерывном режиме. В качестве деталей из титановых сплавов использовались лопатки компрессора газотурбинного двигателя. Для ионно-имплантационной обработки использовали протяженный генератор газовой плазмы, выполненный с возможностью обеспечения работы с азотом и имеющим размеры выходной апертуры 600×100 мм.

Были проведены испытания на выносливость и циклическую прочность образцов из титановых сплавов ВТ6, ВТ 18-У и ВТ9 на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (σ-1) образцов в исходном состоянии составляет 370 МПа, у образцов, упрочненных по способу-прототипу - 380-390 МПа, а по предлагаемому способу - 400-440 МПа.

Таким образом, проведенные сравнительные испытания показали, что применение в способе ионно-имплантационной обработки деталей из титановых сплавов, следующих приемов: размещение лопаток на держателе изделий внутри рабочей камеры вакуумной установки; вращение лопаток в держателе вокруг их собственной оси при одновременном перемещении их относительно имплантора за счет вращения держателя изделий вокруг его собственной оси; ионно-имплантационную обработку поверхности лопатки ионами азота при энергии от 20 до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,3⋅1017 см-2, при циклическом прохождении лопаток через зону имплантации до окончания полной обработки лопаток с последующим охлаждением лопаток вместе с рабочей камерой установки до нормальной температуры; осуществление поворота лопатки вокруг собственной оси на угол от 220 до 280 градусов за каждый цикл ее прохождения через зону имплантации; осуществление каждого последующего вхождения лопатки в зону имплантации со сдвигом фазы ее вращения вокруг собственной оси на 10-20 градусов от угла ее предыдущего вхождения в зону имплантации позволяет увеличить по сравнению с прототипом выносливость и циклическую прочность, что подтверждает заявленный технический результат предлагаемого изобретения - повышение эксплуатационных характеристик (предела выносливости и циклической долговечности) обработанных деталей.

Похожие патенты RU2682743C1

название год авторы номер документа
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ И СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ 2017
  • Насыров Вадим Файзерахманович
  • Галимова Ирина Рифхатовна
  • Хуснимарданов Рушан Наилевич
  • Тимербаев Азамат Зиннурович
  • Мингажев Аскар Джамилевич
  • Измайлова Наиля Фёдоровна
RU2669136C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ МОНОКОЛЕСА КОМПРЕССОРА С ЛОПАТКАМИ ИЗ ТИТАНОВЫХ СПЛАВОВ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Якупов Илья Тагирович
RU2680630C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК РАБОЧЕГО МОНОКОЛЕСА КОМПРЕССОРА ИЗ ТИТАНОВЫХ СПЛАВОВ 2017
  • Насыров Вадим Файзерахманович
  • Мингажев Аскар Джамилевич
  • Измайлова Наиля Фёдоровна
  • Тимербаев Азамат Зиннурович
  • Хуснимарданов Рушан Наилевич
  • Галимова Ирина Рифхатовна
RU2682741C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК МОНОКОЛЕСА КОМПРЕССОРА 2018
  • Насыров Вадим Файзерахманович
  • Тимербаев Азамат Зиннурович
  • Назаров Алмаз Юнирович
  • Мухаматханов Данил Рамилевич
RU2700228C1
СПОСОБ УПРОЧНЕНИЯ ЛОПАТОК МОНОКОЛЕСА ИЗ ТИТАНОВОГО СПЛАВА 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Якупов Илья Тагирович
RU2682265C1
СПОСОБ УПРОЧНЯЮЩЕЙ ОБРАБОТКИ ЛОПАТОК МОНОКОЛЕСА ИЗ ТИТАНОВЫХ СПЛАВОВ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Якупов Илья Тагирович
RU2685892C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2011
  • Павлинич Сергей Петрович
  • Дыбленко Михаил Юрьевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
RU2479667C2
СПОСОБ ЗАЩИТЫ БЛИСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ИЗ ТИТАНОВЫХ СПЛАВОВ ОТ ПЫЛЕАБРАЗИВНОЙ ЭРОЗИИ 2018
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Гонтюрев Василий Андреевич
  • Таминдаров Дамир Рамилевич
  • Мингажев Аскар Джамилевич
  • Гумеров Александр Витальевич
RU2693414C1
СПОСОБ УПРОЧНЯЮЩЕЙ ОБРАБОТКИ ЛОПАТОК БЛИСКА ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Якупов Илья Тагирович
RU2685890C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ И СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ 2011
  • Павлинич Сергей Петрович
  • Дыбленко Михаил Юрьевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
RU2496910C2

Реферат патента 2019 года СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к способу ионно-имплантационной обработки лопаток компрессора из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает размещение лопаток на держателе изделий внутри рабочей камеры вакуумной установки, вращение лопаток в держателе вокруг их собственной оси при одновременном перемещении их относительно имплантора и ионно-имплантационную обработку поверхности лопатки ионами азота при циклическом прохождении лопаток через зону имплантации до окончания полной обработки лопаток с последующим охлаждением лопаток вместе с рабочей камерой установки до нормальной температуры. При этом ионно-имплантационную обработку поверхности лопатки проводят при энергии от 20 до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,3⋅1017 см-2. За каждый цикл прохождения лопатки через зону имплантации она поворачивается вокруг собственной оси на угол от 220 до 280 градусов. Каждое последующее вхождение упомянутой лопатки в зону имплантации происходит со сдвигом фазы ее вращения вокруг собственной оси на 10-20 градусов от угла ее предыдущего вхождения в зону имплантации. 1 пр.

Формула изобретения RU 2 682 743 C1

Способ ионно-имплантационной обработки лопаток компрессора из титановых сплавов, включающий размещение лопаток на держателе внутри рабочей камеры вакуумной установки с протяженным генератором газовой плазмы, вращение лопаток на держателе вокруг их собственной оси при одновременном перемещении их относительно имплантора путем вращения держателя вокруг его собственной оси и ионно-имплантационную обработку поверхности лопатки ионами азота, причем лопатки перемещают через зону имплантации циклически до окончания полной обработки лопаток с последующим охлаждением лопаток вместе с рабочей камерой установки до нормальной температуры, отличающийся тем, что ионно-имплантационную обработку поверхности лопатки осуществляют при энергии от 20 до 35 кэВ и дозой от 1,6⋅1017 см-2 до 2,3⋅1017 см-2, при этом за каждый цикл перемещения лопатки через зону имплантации ее поворачивают вокруг собственной оси на угол от 220 до 280 градусов, причем каждое последующее размещение упомянутой лопатки в зоне имплантации осуществляют со сдвигом фазы ее вращения вокруг собственной оси на 10-20 градусов от угла ее предыдущего вхождения в зону имплантации.

Документы, цитированные в отчете о поиске Патент 2019 года RU2682743C1

СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТНЫХ СЛОЕВ ДЕТАЛЕЙ ИЗ СПЛАВОВ НА ОСНОВЕ ТИТАНА 1996
  • Смыслов А.М.
  • Гусева М.И.
  • Маслова Л.И.
RU2116378C1
Система доменных воздухонагревателей 1930
  • Можаров В.А.
  • Можаров И.В.
SU19645A1
СПОСОБ ЗАЩИТЫ ЛОПАТОК КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ИЗ ТИТАНОВЫХ СПЛАВОВ ОТ ПЫЛЕАБРАЗИВНОЙ ЭРОЗИИ 2013
  • Смыслова Марина Константиновна
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Мингажев Аскар Джамилевич
  • Дыбленко Михаил Юрьевич
RU2552202C2
RU 2013136656 A, 10.02.2015
JP 63255357 A, 21.10.1988
WO 2006038826 A1, 13.04.2006.

RU 2 682 743 C1

Авторы

Насыров Вадим Файзерахманович

Мингажев Аскар Джамилевич

Измайлова Наиля Фёдоровна

Тимербаев Азамат Зиннурович

Хуснимарданов Рушан Наилевич

Галимова Ирина Рифхатовна

Даты

2019-03-21Публикация

2017-10-24Подача